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Drug/Vaccine Design
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° Accelerate the discovery of promising designs



Nanoporous Materials Design
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° Sustainability applications
“ Storing gases (e.g., hydrogen powered cars)

“ Separating gases (e.g., carbon dioxide from flue gas of
coalfired power plants)

“ Detecting gases (e.g., detecting pollutants in outdoor air)



Sustainable Hardware Design for Data Centers
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America’s Data Centers Are Wasting Huge High-performance and Energy-
Amounts of Energy efficient manycore chips

By 2020, data centers are projected to consume roughly 140
billion kilowatt-hours annually, costing American businesses
$13 billion annually in electricity bills and emitting nearly 150
million metric tons of carbon pollution

Report from Natural Resources Defense Council:.
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-I1B.pdf



Auto ML and Hyperparameter Tuning
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° Accuracy of models critically depends on hyper-parameters

“ Optimization algorithm, learning rates, momentum, batch
normalization, batch sizes, dropout rates, weight decay, data
augmentation,



A/B Testing to Configure Websites
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Making Delicious Cookies
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Bayesian Optimization for a Better Dessert

Greg Kochanski, Daniel Golovin, John Karro, Benjamin Solnik,

Subhodeep Moitra, and D. Sculley
{gpk, dgg, karro, bsolnik, smoitra, dsculley}@google.com; Google Brain Team

Abstract

We present a case study on applying Bayesian Optimization to a complex real-world
system; our challenge was to optimize chocolate chip cookies. The process was
a mixed-initiative system where both human chefs, human raters, and a machine
optimizer participated in 144 experiments. This process resulted in highly rated
cookies that deviated from expectations in some surprising ways — much less sugar
in California, and cayenne in Pittsburgh. Our experience highlights the importance
of incorporating domain expertise and the value of transfer learning approaches.



Making AlphaGo Better
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Bayesian Optimization in AlphaGo

Yutian Chen, Aja Huang, Ziyu Wang, loannis Antonoglou, Julian Schrittwieser,
David Silver & Nando de Freitas

DeepMind, London, UK
yutianc@google.com

Abstract

During the development of AlphaGo, its many hyper-parameters were tuned with
Bayesian optimization multiple times. This automatic tuning process resulted in
substantial improvements in playing strength. For example, prior to the match
with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate
from 50% to 66.5% in self-play games. This tuned version was deployed in the
final match. Of course, since we tuned AlphaGo many times during its develop-
ment cycle, the compounded contribution was even higher than this percentage. It
is our hope that this brief case study will be of interest to Go fans, and also provide
Bayesian optimization practitioners with some insights and inspiration.



Neuroscience and Brain Analytics
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Credit: https://www.nature.com/articles/s41467-018-03657-3



Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value
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Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

Cannot afford
exhaustive search

11



Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

Trial and Error?
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Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

Can we do better than
trial-and-error?
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Accelerate Search via Bayesian Optimization

° Efficiently optimize expensive black-box functions

x" = argmax f(x)

W

f(x)

Function evaluation

input

- Black-box queries (aka experiments) are expensive
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Bayesian Optimization: Key ldea

° Build a surrogate statistical model and use it to
intelligently search the space

“ Replace expensive queries with cheaper queries
“ Use uncertainty of the model to select expensive queries
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Bayesian Optimization: Three Key Elements

éatistical model M\ 4 Acquisition function )
J optimization
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° Statistical model (e.g., Gaussian process)

° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



BO Dimensions: Input Space

° Continuous space

“ All variables of input x are continuous

° Discrete / Combinatorial space

~ Sequences, trees, graphs, sets, permutations etc.

° Hybrid space

“ x = mixture of x,; (discrete) and x, (continuous) variables
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BO Dimensions: Input Space

° Continuous space

“ All variables of inp

Most of the focus of
existing BO work

° Discrete / Combinatorial space

~ Sequences, trees, graphs, sets, permutations etc.

° Hybrid space

“ x = mixture of x,; (discrete) and x, (continuous) variables
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BO Dimensions: No. of Objectives

° Single objective
“ For example, finding hyperparameters to optimize accuracy

°* Multiple objectives

DRUG Drug Discovery &
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BO Dimensions: No. of Objectives

° Single objective

“ For example, fin
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BO Dimensions: No. of Fidelities

° Single-fidelity setting
“ Most expensive and accurate function evaluation

° Multi-fidelity setting
“ Function evaluations with varying trade-offs in cost and accuracy
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BO Dimensions: No. of Fidelities

° Single-fidelity setting

“ Most expensive and a

Most of the focus of
existing BO work

° Multi-fidelity setting

“ Function evaluations with varying trade-offs in cost and accuracy
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BO Dimensions: Constraints

° Unconstrained setting

4 all inputs are valid

° Constrained setting
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BO Dimensions: Constraints

° Unconstrained setting

4 all inputs are valid

Most of the focus of
existing BO work

° Constrained setting
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Drugs/Vaccines
that are safe

~6.5 YEARS ~7 YEARS ~1.5 YEARS
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Outline of the Tutorial

° Background on GPs and Single-Objective BO
° Bayesian Optimization over Combinatorial Spaces

° Bayesian Optimization over Hybrid Spaces

Break

° Multi-Fidelity Bayesian Optimization
* Constrained Bayesian Optimization
* Multi-Objective Bayesian Optimization

°* Summary and Outstanding Challenges in BO
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