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Background on Gaussian Processes
and

Single-Objective Bayesian Optimization 
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Bayesian Optimization: Key Idea

Build a surrogate statistical model and use it to 
intelligently search the space
Replace expensive queries with cheaper queries
Use uncertainty of the model to select expensive queries

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Bayesian Optimization: Illustration

Credit: Ryan Adams 
https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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BO needs a Probabilistic Model

To make predictions on unknown input

To quantify the uncertainty in predictions

One popular class of such models are Gaussian 
Processes (also called GPs)



14

Gaussian Processes: What and Why?

Non-parametric, Bayesian and Kernel driven model

Flexibility
Principled 

uncertainty 
estimation

Specification of 
prior beliefs about 

rich function 
classes
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Gaussian Process

Stochastic process definition
Given any set of input points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 , the output 

values follows a multi-variate Gaussian distribution

The covariance matrix Σ is given by a kernel function 
𝑘𝑘 𝑥𝑥, 𝑥𝑥′ , i.e., Σ𝑖𝑖𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖
Kernel captures the similarity between 𝑥𝑥 and 𝑥𝑥𝑥[1]

GPs are fully characterized by the kernel function[2]

Footnotes

1. For people aware of SVMs, it is the same kernel function.

2. Technically, there is also the mean function, but it is not as interesting for most 
applications.  

[𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2),𝑓𝑓(𝑥𝑥3), … ,𝑓𝑓(𝑥𝑥𝑚𝑚)] ~ 𝒩𝒩(0, Σ)
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Gaussian Process: Inference

 Inference: Given training data {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), … (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚)}, 
the prediction for an unseen point 𝑥𝑥∗

Prediction(𝑥𝑥∗) ~ 𝒩𝒩(𝑦𝑦∗,𝜎𝜎∗)

𝑦𝑦∗ = 𝒌𝒌∗ 𝑲𝑲−𝟏𝟏 𝒀𝒀

𝜎𝜎∗ = 𝑘𝑘 𝑥𝑥∗, 𝑥𝑥∗ − 𝒌𝒌∗ 𝑲𝑲−𝟏𝟏𝒌𝒌∗

𝒌𝒌∗ = [𝑘𝑘 𝑥𝑥∗, 𝑥𝑥1 ,𝑘𝑘 𝑥𝑥∗, 𝑥𝑥2 , … , 𝑘𝑘 𝑥𝑥∗, 𝑥𝑥𝑚𝑚 ]

𝑲𝑲𝒊𝒊𝒊𝒊 = 𝑘𝑘 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖
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Gaussian Process: Training

Training procedure: searching for (kernel) hyper-
parameters by optimizing the marginal log-likelihood

Choice of kernel 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ is critical for good performance
Allows to incorporate domain knowledge (e.g., Morgan 

fingerprints in chemistry)
Matern kernel is a popular choice for continuous spaces 

log 𝑝𝑝 𝑦𝑦 = −
1
2
𝒀𝒀𝑻𝑻𝑲𝑲−𝟏𝟏𝒀𝒀 −

1
2

log det 𝑲𝑲 −
𝑛𝑛
2

log 2𝜋𝜋
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Gaussian Process: Two Views

Function space view: distribution over functions 
Function class is characterized by kernel

Weight space view: Bayesian linear regression in 
kernel’s feature space

𝑓𝑓 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝜏𝜏 𝑥𝑥 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = < 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑥𝑥′ >

Prior Posterior
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Gaussian Processes: Challenges and Solutions

Scalability: naive time complexity O(n3)

Solution: Sparse Gaussian processes 

Non-Gaussian likelihoods
 No closed form expression, e.g., classification setting
 Solution: Approximate inference 

log 𝑝𝑝 𝑦𝑦 = −
1
2
𝒀𝒀𝑻𝑻𝑲𝑲−𝟏𝟏𝒀𝒀 −

1
2

log det 𝑲𝑲 −
𝑛𝑛
2

log 2𝜋𝜋
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Acquisition Function

 Intuition: captures utility of evaluating an input

Challenge: trade-off exploration and exploitation 
 Exploration: seek inputs with high variance
 Exploitation: seek inputs with high mean
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Acquisition Function: Illustration
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Acquisition Function: Examples

Upper Confidence Bound (UCB)
Selects input that maximizes upper confidence bound

𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝑦𝑦∗(𝑥𝑥) + 𝛽𝛽 𝜎𝜎∗(𝑥𝑥)

Expected Improvement (EI)
Selects input with highest expected improvement over the 

incumbent

Thompson Sampling (TS)
Selects optimizer of a function sampled from the surrogate 

model’s posterior

Knowledge Gradient 
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Information-Theoretic Acquisition Functions

Key principle: select inputs for evaluation which provide 
maximum information about the optimum 

Concretely, pick observations which quickly decrease the 
entropy of distribution over the optimum

Design choices of 𝛼𝛼 leads to different algorithms

𝐴𝐴𝐴𝐴 𝑥𝑥 = Expected decrease in entropy
𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐻𝐻 𝛼𝛼 𝐷𝐷) − 𝐸𝐸𝑦𝑦[𝐻𝐻 𝛼𝛼 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦}

= Information Gain(𝛼𝛼; 𝑦𝑦)
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Information-Theoretic Acquisition Functions

Design choices of 𝛼𝛼 leads to different algorithms

𝛼𝛼 as input location of optima 𝑥𝑥∗
Entropy Search (ES) / Predictive Entropy Search (PES)
 Intuitive but requires expensive approximations

𝛼𝛼 as output value of optima 𝑦𝑦∗
Max-value Entropy Search (MES) and it’s variants
Computationally cheaper and more robust

𝐴𝐴𝐴𝐴 𝑥𝑥 = Expected decrease in entropy
𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐻𝐻 𝛼𝛼 𝐷𝐷) − 𝐸𝐸𝑦𝑦[𝐻𝐻 𝛼𝛼 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦}

= Information Gain(𝛼𝛼; 𝑦𝑦)
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Non-Myopic / Lookahead Acquisition Functions

Myopic acquisition functions (e.g., EI) reason about 
immediate utility

Non-myopic variants consider BO as a MDP and reason 
about longer decision horizons

D x

D1

…
…

D’’1

D’’’1

D’2
…

D’’2

D’’’2

…

…
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Non-Myopic / Lookahead Acquisition Functions

Non-myopic variants consider BO as MDP and reason 
about longer decision horizons

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛′

𝑢𝑢𝑛𝑛−1 𝑥𝑥′ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]

Bellman 
Recursion
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Non-Myopic / Lookahead Acquisition Functions

Non-myopic variants consider BO as MDP and reason 
about longer decision horizons

Challenge: curse of dimensionality

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛′

𝑢𝑢𝑛𝑛−1 𝑥𝑥′ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛1

{𝑢𝑢 𝑥𝑥1 𝐷𝐷1 + 𝐸𝐸𝑦𝑦1[max
𝑛𝑛2

{𝑢𝑢 𝑥𝑥2 𝐷𝐷2) … . }]}]
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Non-Myopic / Lookahead Acquisition Functions

Non-myopic variants consider BO as MDP and reason 
about longer decision horizons

Challenge: curse of dimensionality

Some solutions
Multi-step lookahead policies with approximations 
Rollout based approximate dynamic programming

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛′

𝑢𝑢𝑛𝑛−1 𝑥𝑥′ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛1

{𝑢𝑢 𝑥𝑥1 𝐷𝐷1 + 𝐸𝐸𝑦𝑦1[max
𝑛𝑛2

{𝑢𝑢 𝑥𝑥2 𝐷𝐷2) … . }]}]
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization
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𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Acquisition Function Optimizer

Challenge: non-convex/multi-modal optimization problem

Commonly used approaches

Space partitioning methods (e.g., DIRECT, LOGO)

Gradient based methods (e.g., Gradient descent)

Evolutionary search (e.g., CMA-ES)
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BO Software: BoTorch

Scalability via automatic differentiation
PyTorch/GpyTorch

Monte-Carlo acquisition functions
Express acquisition functions as expectations of utility 

functions
Compute expectations via Monte-Carlo sampling 
Use the reparameterization trick to make acquisition functions 

differentiable

Other software: Trieste (based on TensorFlow)

Not actively maintained: GPyOpt, Spearmint
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Questions ?
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