Background on Gaussian Processes
and
Single-Objective Bayesian Optimization
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Bayesian Optimization: Key ldea

° Build a surrogate statistical model and use it to
intelligently search the space

“ Replace expensive queries with cheaper queries
“ Use uncertainty of the model to select expensive queries
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Bayesian Optimization: lllustration
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Credit: Ryan Adams

https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8 adams_slides.pdf
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Bayesian Optimization: Three Key Elements
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° Statistical model (e.g., Gaussian process)
° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)
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BO needs a Probabilistic Model

°* To make predictions on unknown input

° To quantify the uncertainty in predictions

/\/\

° One popular class of such models are Gaussian
Processes (also called GPs)
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Gaussian Processes: What and Why?

Non-parametric, ‘Bayesian

4 4

and ‘Kernel driven model

4

Principled S.pecificj,ation of
Flexibility uncertainty prlo.r beliefs .about
. . rich function
estimation classes
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Gaussian Process

° Stochastic process definition

~ Given any set of input points {x4, x5, ..., X,,, }, the output
values follows a multi-variate Gaussian distribution

[f Cen)s £ (22D, £ (x3), e, f ()| ~ NV (O, 2)

° The covariance matrix 2 is given by a kernel function
! . _
k(x,x"),ie, X = k(xl-,xj)
~ Kernel captures the similarity between x and x’l!!
“ GPs are fully characterized by the kernel function!?]

Footnotes

1. For people aware of SVMs, it is the same kernel function.

2. Technically, there is also the mean function, but it is not as interesting for most
applications. 15



Gaussian Process: Inference

* Inference: Given training data {(x,, y,), (x5, v5), ... (x,,V..)},
the prediction for an unseen point x”*

Prediction(x™) ~ N (yv",0")
y* = k*Kly
o* = k(x*, x*)— k* Kk

k* = [k(x", x ), k(x", x,), ..., k(x", x, )]

Kij = k(x;, x;)
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Gaussian Process: Training

° Training procedure: searching for (kernel) hyper-
parameters by optimizing the marginal log-likelihood

1 1 n
logp(y) = —=YTK~1Y — =log det(K) — >

> > log 2w

° Choice of kernel k(x,x") is critical for good performance

“ Allows to incorporate domain knowledge (e.g., Morgan
fingerprints in chemistry)

“~ Matern kernel is a popular choice for continuous spaces
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Gaussian Process: Two Views

° Function space view: distribution over functions

“ Function class is characterized by kernel

Prior

Posterior

/\/—\

°* Weight space view: Bayesian linear regression in

kernel’s feature space

fx) =w'z(x)

k(x,x")=<7t(x),7(x") >
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Gaussian Processes: Challenges and Solutions

* Scalability: naive time complexity O(n3)

1 1 n
logp(y) = —=YTK~1Y — ~logdet(K) — >

> > log 2w

“ Solution: Sparse Gaussian processes

°* Non-Gaussian likelihoods
“ No closed form expression, e.g., classification setting
“ Solution: Approximate inference
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Bayesian Optimization: Three Key Elements
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Acquisition Function

° Intuition: captures utility of evaluating an input

° Challenge: trade-off exploration and exploitation
“ Exploration: seek inputs with high variance
“ Exploitation: seek inputs with high mean

truth, f(x)
L observations {(x;, yi)}
% acquired (Xp+1,Yn+1)

> pure
exploitation

pure
exploration

El

Xn+1
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Acquisition Function: lllustration

== = truth, f(x) == = truth, f(x)
= model, y(x) &% observations {(x; yi)}
i Vi ired (Xn+1,Yn+1)
- &% observations {(x;, y)} —— % acquire n
77N / \
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Acquisition Function: Examples

Upper Confidence Bound (UCB)

“ Selects input that maximizes upper confidence bound

AF(x) = y*(x) + B o™ (x)

Expected Improvement (El)

“ Selects input with highest expected improvement over the
incumbent

Thompson Sampling (TS)

“ Selects optimizer of a function sampled from the surrogate
model’s posterior

Knowledge Gradient
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Information-Theoretic Acquisition Functions

* Key principle: select inputs for evaluation which provide
maximum information about the optimum

° Concretely, pick observations which quickly decrease the
entropy of distribution over the optimum

AF (x) = Expected decrease in entropy

AF(x) = H(a | D) — E,[H(a|D U {x, y}
= Information Gain(a; y)

° Design choices of a leads to different algorithms
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Information-Theoretic Acquisition Functions

° Design choices of a leads to different algorithms

AF (x) = Expected decrease in entropy
AF(x) = H(a | D) — E,[H(a|D U {x, y}
= Information Gain(a; y)

° « as input location of optima x~

~ Entropy Search (ES) / Predictive Entropy Search (PES)
“ Intuitive but requires expensive approximations

° o as output value of optima y”~

“~ Max-value Entropy Search (MES) and it’s variants
“ Computationally cheaper and more robust
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Non-Myopic / Lookahead Acquisition Functions

° Myopic acquisition functions (e.g., El) reason about
immediate utility

°* Non-myopic variants consider BO as a MDP and reason
about longer decision horizons

/
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Non-Myopic / Lookahead Acquisition Functions

°* Non-myopic variants consider BO as MDP and reason
about longer decision horizons

ug(x|D) = uy (x|D) + E, [rrgca}xut_l(x’ID U{x,y}]

Bellman
Recursion
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Non-Myopic / Lookahead Acquisition Functions

°* Non-myopic variants consider BO as MDP and reason
about longer decision horizons

ug(x|D) = uy (x|D) + E, [rrgca}xut_l(x’ID U{x,y}]

° Challenge: curse of dimensionality

ug (x|D) = uy (x|D) + E, [max{u(x,|Dy) + Eys [max{u(xz|Dy) ... ]3]
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Non-Myopic / Lookahead Acquisition Functions

°* Non-myopic variants consider BO as MDP and reason
about longer decision horizons

ug(x|D) = uy (x|D) + E, [rgca}xut_l(x’ID U{x,y}]

° Challenge: curse of dimensionality

ug (x|D) = uy (x|D) + E, [max{u(x,|Dy) + Eys [max{u(xz|Dy) ... ]3]

°* Some solutions
“ Multi-step lookahead policies with approximations
“ Rollout based approximate dynamic programming
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Bayesian Optimization: Three Key Elements
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° Statistical model (e.g., Gaussian process)
° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



Acquisition Function Optimizer

° Challenge: non-convex/multi-modal optimization problem

°* Commonly used approaches
“ Space partitioning methods (e.g., DIRECT, LOGO)
“ Gradient based methods (e.g., Gradient descent)

“ Evolutionary search (e.g., CMA-ES)
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BO Software: BoTorch

° Scalability via automatic differentiation
~ PyTorch/GpyTorch

°* Monte-Carlo acquisition functions

“ Express acquisition functions as expectations of utility
functions

“ Compute expectations via Monte-Carlo sampling

“ Use the reparameterization trick to make acquisition functions
differentiable

° Other software: Trieste (based on TensorFlow)

° Not actively maintained: GPyOpt, Spearmint
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Questions ?
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