Bayesian Optimization
over Combinatorial Spaces



Application #1: Drug/Vaccine Design
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° Accelerate the discovery of promising designs



Application #2: Nanoporous Materials Design
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° Sustainability applications
“ Storing gases (e.g., hydrogen powered cars)

“ Separating gases (e.g., carbon dioxide from flue gas of
coalfired power plants)

“ Detecting gases (e.g., detecting pollutants in outdoor air)



Combinatorial BO: The Problem

° Goal: find optimized combinatorial structures

e
el

Drug design Hardware design
& & 5 Material design

°* Many other science and engineering applications



Combinatorial BO: The Problem

° Given: a combinatorial space of structures X (e.g.,
sequences, graphs) and an expensive black-box
function f(x € X) to evaluate each structure x € X

° Find: optimized combinatorial structure x*

x" = argmax f(x)

° Evaluation: number of function evaluations to
(approximately) optimize f(x)



Combinatorial BO: Challenges

° Goal: find optimized combinatorial structures

Drug design Hardware design

Material design

* Challenges
“ Evaluating each candidate design is expensive
“ Large combinatorial space of designs (e.g., sequences, graphs)



Combinatorial BO: Technical Challenges
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° Effective modeling over combinatorial structures (e.g., sequences, graphs)

* Solving hard combinatorial optimization problem to select next structure




Definition of Combinatorial Space

° Space of binary structures X = {0,1}"

“ Each structure x € X be represented using n binary variables
X1, Xo, ey X

° Categorical variables

“ x; can take more than two candidate values

° How to deal with categorical variables?
“ Option 1: Encode them as binary variables (a common practice)
“ Option 2: Modeling and reasoning over categorical variables



Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

° Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...



Aside: Combinatorial BO vs. Structured Prediction

° Structured prediction (SP) [Lafferty et al., 2001] [Bakir et al., 2007]

“ Generalization of classification to structured outputs (e.g.,
seqguences, trees, and graphs)

m POS tagging, parsing, information extraction, image segmentation
“ CRFs, Structured Perceptron, Structured SVM

* Complexity of cost function vs. tractability of inference

“ Simple cost functions (e.g., first-order) and tractable inference
“ Complex cost functions (e.g., higher-order) and heuristic inference
“ Learning to search for SP [Daume’ et al., 2009] [Doppa et al., 2014]

° Key Difference: Small data vs. big data setting
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Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

° Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...
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BOCS Algorlthm [Baptista et al., 2018]

° Linear surrogate model over binary structures

“fxeX)=6".¢(x)

~ ¢(x) consists of up to Quadratic (second-order) terms

A P(x) = [Xq1, X9y ey X gy X1 X, X1. X3y eeny Xg—q1-X g ]

°* Thompson sampling as acquisition function

° Acquisition function optimization

“ Binary quadratic program

Xnext = arg max bTx +xTAx
x€{0,1}4
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BOCS Algorlthm [Baptista et al., 2018]

° Linear surrogate model over binary structures

“fxeX)=6".¢(x)

~ ¢(x) consists of up to Quadratic (second-order) terms

A P(x) = [Xq1, X9y ey X gy X1 X, X1. X3y eeny Xg—q1-X g ]

°* Thompson sampling as acquisition fu

May not be sufficient

° Acquisition function optimization to capture desired
dependencies

“ Binary quadratic program

Xpexe = arg max bTx +xTAx
x€{0,1}4
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BOCS Algorlthm [Baptista et al., 2018]

° Linear surrogate model over binary structures

“fxeX)=6".¢(x)

~ ¢(x) consists of up to Quadratic (second-order) terms

A P(x) = [Xq1, X9y ey X gy X1 X, X1. X3y eeny Xg—q1-X g ]

°* Thompson sampling as acquisition function

Cannot handle

° Acquisition function optimization | declarative constraints

- Binary quadratic program for valid structures

Xpexe = arg max bTx +xTAx
x€{0,1}4
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Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

°* Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...
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SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model

~ works natu
“ Prediction/Unc

° Expected impr
\

Uncertainty estimates
can be poor

\

/

for categorical variables
‘qty (= empirical mean/variance over trees)

n function

° Hand-designed local search with restarts for AFO

16



SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model

“ works naturally for categorical variables

~ Prediction/Uncertainty (= empirical mean/variance over trees)

° Expected improvement as acquisition function

° Hand-designed local search with restarts for AFO

S

Can potentially get
stuck in local optima
N

~

)

17



COMBO Algorithm [0h et al., 2019]

°* GP with diffusion kernel [Kondor and Lafferty 2002]
“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Expected improvement as acquisition function

° Local search with random restarts for AFO

18



COMBO Algorithm [0h et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Combinatorial graph representation [0Oh et al., 2019]

ol A oBA
eBA

ol A o
oBA

ol A
Each vertex is a
candidate structure
x €X
ol A
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COMBO Algorithm [0h et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]
“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Combinatorial graph representation [Oh et al., 2019]

“ Graph Cartesian product of subgraphs

ol A ol A ® [ ] A
emA omA
>
omA oR4 ¢ - *
omA omA Gy G G3




COMBO Algorithm [0h et al., 2019]

°* GP with diffusion kernel [Kondor and Lafferty 2002]

a RequiMntation of the input space X
\

Cannot use SOTA acquisition
functions if we cannot sample
functions from GP posterior

- /

°* Expected improvement as acquisition function

° Local search with random restarts for AFO



COMBO Algorithm [0h et al., 2019]

°* GP with diffusion kernel [Kondor and Lafferty 2002]
“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Expected improvement as acquisition function

° Local search with random restarts for AFO
I

Can potentially get
stuck in local optima

J 22




Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

° Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...
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MerCBO Algorithm [Deshwal et al., 2021]

° Same surrogate model as COMBO

“ GP with discrete diffusion kernel and graph representation

°* Thompson sampling as acquisition function

“ Mercer features allow sampling functions from GP posterior

° Acquisition function optimization
“ Binary quadratic program
“ Parametrized submodular relaxation (PSR) solver

Xnext = arg max bTx+xTAx
x€{0,1}4
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MerCBO Algorithm [Deshwal et al., 2021]

° Same surrogate model as COMBO

“ GP with discrete diffusion kernel and graph representation

°* Thompson sampling as acquisition function

“ Mercer features allow sampling functions from GP posterior

° Acquisition function optimization
“ Binary quadratic program
“ Parametrized submodular relaxation (PSR) solver

Xpexe = arg max bTx +xTAx
x€{0,1}4
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MerCBO: Acquisition Function

* Mercer features allow sampling functions from GP posterior

° Missing puzzle to leverage prior acquisition functions
“ Thompson Sampling (TS)
“ Predictive Entropy Search (PES)
“~ Max-value Entropy Search (MES)

A

BO for discrete
spaces

BO for continuous
spaces

26



MerCBO: Mercer Features

27



MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

 Graph Laplacian L(G) decomposes over those of sub-graphs
L(G) = L(G,) & L(Gy) @ L(Gs3)

@ is Kronecker sum operator

28




MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

 Graph Laplacian L(G) decomposes over those of sub-graphs
L(G) = L(G,) & L(Gy) & L(G3)

@ is Kronecker sum operator

O [Hammack et al., 2011] Given two graphs G and G, with the eigenspace
of their Laplacians being {14, U} and {4,, U, } respectively, the

eigenspace of L(G; [-

G,) is given by {1, x A,,U;® U,}.
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MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

 Graph Laplacian L(G) decomposes over those of sub-graphs
L(G) = L(G,) & L(Gy) & L(G3)

@ is Kronecker sum operator

O [Hammack et al., 2011] Given two graphs G and G, with the eigenspace
of their Laplacians being {14, U} and {4,, U, } respectively, the

eigenspace of L(G; [-

G,) is given by {1, x A,,U;® U,}.

d Each G; has eigenvalue {0,2} and eigenvectors {[1, 1], [1, -1]}
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MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

° Eigenvalue set: {0, 2, ..., 2n}

~ jth eigenvalue occurs with (7}) multiplicity

° Eigenvector set: Hadamard matrix (H) of order 2™
_ r,r .
Hi; = (—1)\Teri)
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MerCBO: Mercer Features

2n-1
K(x1,x2) = z e Pl ([x1]) uj([x2])

=0

2n—1
K(x1,x2) = z e BAi _q<rix1> _q<rix>
i=0

K(xq,x2) = p(x1)" p(x7)

() = (VePhi —172>)
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MerCBO: Mercer Features

2"-1
i=0

K(x1,x2) = ¢(x1)" p(x7)
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MerCBO Algorithm [Deshwal et al., 2021]

° Same surrogate model as COMBO

“ GP with discrete diffusion kernel and graph representation

°* Thompson sampling as acquisition function

“ Mercer features allow sampling functions from GP posterior

° Acquisition function optimization
“ Binary quadratic program
“ Parametrized submodular relaxation (PSR) solver

Xnext = arg max bTx+xTAx
x€{0,1}4
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MerCBO: Acquisition Function Optimization

_ T T
Xnext = ATy xé?o?i(}n b'x+x"Ax

° Parametrized Submodular Relaxation (PSR) solver

“ Construct a A-parametrized submodular relaxation

<
Solve using min.
graph cut algorithms

“ Optimize the relaxation over A

hp, () +x"A"x < ha, (x) + xTA™x < ...

Inspired by work on prescriptive price optimization [Ito and Fujimaki, 2016] 35




MerCBO Results #1: Order of Features

° Second-order features provide the best trade-off

“ Tractability and good overall BO performance

g - —— TS w/ 2nd order
- TS w/ 3rd order
g —— TS w/ 4th order
™ 07
>
o S
>
Z 4
2.
@) ;5.
1-
0

50 100 150 200 250
Number of BO iterations
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MerCBO Results #1: Order of Features

° Second-order features provide the best trade-off

“ Tractability and good overall BO performance

Objective value

le—1 LABS

—— TS w/ 2nd order
—0.251 TS w/ 3rd order

—1.75 - o T~—

50 100 150 200 250
Number of BO iterations
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MerCBO Results #2: Comparison with State-of-the-art

°* MerCBO outperforms prior methods

— MerCBO — BOCS
8 COMBO  —— SMAC
[0)
S 7
©
> 6
-
-
e
c
= 4
—
3-
2 . . : : :
50 100 150 200 250

Number of iterations 38



MerCBO Results #2: Comparison with State-of-the-art

°* MerCBO outperforms prior methods

le—1 LABS (dimension = 50)
0.0
— MerCBO —— BOCS
—0.2 —— COMBO —— SMAC
Y _04
T e
> 0.6
g 0.8
E b
c —-1.0
= 1.2
— . I
_\M{\ | ILI |
—1.4 R

50 100 150 200 250
Number of iterations 39



MerCBO for Biological Sequence Design

° Design of optimized biological structures such as DNA
and proteins have many medical applications

40



Biological Sequence Design: Three Desiderata

° Diversity

“ uncover a diverse set of structures

° Parallel experiments

~ Select a batch of structures for evaluation in each round

° Real-time accelerated design

“ Use parallel experimental resources to accelerate optimization

41



MerCBO Results #3: Real-time acceleration

° TS is better than El for real-time accelerated design

o decd ARX_L343Q R1
' —— TS w/ batch 1

—6.5 - TS w/ batch 5
o — TS w/ batch 20
=) —7.0 - —— TS w/ batch 50
rg === p-El w/ batch 1
O —-7.5 === p-El w/ batch 5
> p-El w/ batch 20
g —8.0 --= p-El w/ batch 50
=

—-8.5
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—9.04{ VOO0 TSSSSSSSSISS S ta - —
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MerCBO Results #3: Real-time acceleration

°* TS improvement over El increases with batch size
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MerCBO Results #4: Diversity of sequences

° TS is better than El for diversity of sequences

ARX_L343Q R1

14
Q —— TS w/ batch 5 —== p-El w/ batch 5
U 12 - —— TS w/ batch 20 —-== p-El w/ batch 20
% - TS w/ batch 50 === p-El w/ batch 50
+ ~
1= e T T —
o B e Dt e DT
c 8
&
g 07
(o)
I 4 | w
c Dl TP I L SO
0
2 -
=
______________ e T ™ i B e e T
0 1 1 1 T 1 1
0 100 200 300 400 500

Number of BO iterations
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MerCBO Results #4: Diversity of sequences

°* TS improvement over El increases with batch size

ARX_L343Q R1
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Learning to Search Framework [Deshwal et al., 2021]

°* Use machine learning to improve the accuracy of search

“ Continuously update the search control knowledge using the
training data generated from the previous search experience

Search for good starting
states via learned H
[ Rank Learning ]

EEE——— Algorithm
: Updated heuristic
: /kf\ function H

O

Selected
starting state

Search using AF heuristic
from the selected state

New training n @00 @0 V(I

: data T, 0—@—-@® 0@ V(T,)
ﬂ—/_\' Tm .—».—». .—». V(T

Aggregate training data
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Learning to Search Framework [Deshwal et al., 2021]

° Defines a new family of search-style BO approaches

° Can work with any complex statistical model and
acquisition function

° Can handle complex domain constraints to select
“valid”” structures for evaluation

47



Reduction to Continuous BO [GOmez-Bombarelli et al., 2018]...

°* Key ldea: Convert discrete space into continuous space

° Train a deep generative model (VAE) using unsupervised
structures

ATy A 7 S
Latent o P }
—p - oy A0 sas
Space & e

Encoder Decoder

°* Perform BO in the learned continuous latent space

“ Surrogate modeling and acquisition function optimization in
latent space (vs. combinatorial space)
48



Reduction to Continuous BO [csmez-Bombarelii et al., 2018]...

°* BO in the learned latent space

Latent space Z ‘

next

f Enext) l

{e re}
l

( Gaussian process \

Model M

¢ -

CD(Znext)

Decoder @

s

Y

N

Acquisition function
optimization

~

Znext = arg rgleazx AF (M, x)

)
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Reduction to Continuous BO [csmez-Bombarelii et al., 2018]...

°* BO in the learned latent space

Latent space Z ‘

S -

— PoN= @ T 4 P
Xnext = P(Znext) — O 0y --. 70—
A\ -

f Genext) l

l

Decoder @

Decoded structure

Gaussian process
Model M

may not be valid

N

/

N )
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Reduction to Continuous BO [GOmez-Bombarelli et al., 2018]...

°* BO in the learned latent space

f (Xnext) l
{o re}
[
\ Gaussian process
Model M
Latent space Z p

"

Decoder @

Decoded structure
may not be valid

/

N )

°* Some recent work to address this challenge

~ @Griffiths R.-R. and Hernandez-Lobato J. M.: Constrained Bayesian optimization for

Automatic Chemical Design Using Variational Autoencoders, Chemical Science, 2019
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Reduction to Continuous BO [csmez-Bombareli et al., 2018]..

°* BO in the learned latent space

Decoder @

S -

Xnext = (D(Znext)

f@mﬂ)l

{o re} o
|

Gaussian process
Model M
Latent space Z :

Acquisition function
optimization

Znext = arg Teaé’( AF(M, x)

° Challenges
o Doesn’t (explicitly) incorporate information about decoded structures

o Surrogate model may not generalize well for small data setting
52



Improve Latent Space
via Weighted Retraining (rripp et al., 2020)

° Periodically retrain the deep generative model

° Assign importance weights to training data proportional
to their objective function value

53



Improve Latent Space
via Weighted Retraining (rripp et al., 2020)

° Periodically retrain the deep generative model

° Assign importad
to their object

AN

Computationally
expensive

~

g data proportional

54



Improve Latent Space
via Weighted Retraining (rripp et al., 2020)

° Periodically retrain the deep generative model

° Assign importance weights to training data proportional
to their objective function value

Overall approach is not
effective for small-data setting
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Uncertainty-guided Latent Space BO (notin et al,, 2021]

° Leverage the epistemic uncertainty of the decoder to
guide the optimization process

° Importance sampling-based estimator for uncertainty
guantification over high-dimensional discrete structures

° No retraining of deep generative model is needed
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LADDER Algorithm [Deshwal and Doppa, 2021]

Combinatorial space X Decoder @

) b L\ >
e a fg-",‘,ﬁ AN S S
ST 0 e 0 e RN 7
— B o R R
C’ ":"*‘ o S AR 4
AN li:'hi‘ QN 5
. \) i N 1/ \

AW 0D
Xnext = q)(znext) —dL ; ; o
f(xnext) l

Structure-coupled {0 %, f (}ﬁ)} ®

kernel

Model M

/Gaussian rocess \
\ ' 4 Acquisition function )

optimization

A 4

Znext = ATg Max AF (M, x)

\ )

Latent space Z
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LADDER Algorithm [Deshwal and Doppa, 2021]

Combinatorial space X’

Decoder @

Structure-coupled {. B f (iﬁ)} ®

kernel l
\ Gaussian process — .
Acquisition function

Model M ST
optimization

Znext = Arg Max AF (M, x)

Latent space Z

* Key ldea: Combines the complementary strengths of deep generative
models and structured kernels for better surrogate modeling
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Structure-Coupled Kernel

* Structure-coupled kernel (¢) combines
o Continuous kernels over latent space Z (e.g., Matern)
o Structured kernels (e.g., generic/hand-designed strings, graphs)

* Key Idea

O Extrapolate eigenfunctions of the latent space kernel matrix L with
basis functions from the structured kernel k

c(z,z)=k.K LK 'k,

* Generalized Nystrom Extension [Ref]
* k acts like a smooth extrapolating kernel
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Latent Space BO Results #1

* LADDER outperforms latent space BO real benchmarks

Best value found
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'—I
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Number of iterations
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Number of iterations

Chemical design task



Latent Space BO Results #2

* LADDER is competitive or better than state-of-the-art methods

Best value found
(8] [o)]

N

=

Y

w

- LADDER (String}

w— Naive LSBO w/ retraining
= DbAS

= FB-VAE

=== CEM-PI

— RWR

—waaﬁ&

o

20

40 60 80 100
Number of iterations

Arithmetic expression task
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~2.001
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= CEM-PI

— RWR

—3.50
0

20

40 60 80 100
Number of iterations

Chemical design task



Code and Software

MerCBO: https://github.com/aryandeshwal/MerCBO

LADDER: https://git

hub.com/aryandeshwal/LADDER

BOPS: https://githu

n.com/aryandeshwal/BOPS

COMBO: https://git

hub.com/QUVA-Lab/COMBO

°* SMAC: https://github.com/automl/SMAC3
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https://github.com/aryandeshwal/MerCBO
https://github.com/aryandeshwal/LADDER
https://github.com/aryandeshwal/BOPS
https://github.com/QUVA-Lab/COMBO
https://github.com/automl/SMAC3

Questions ?
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