Bayesian Optimization over Combinatorial Spaces

Application #1: Drug/Vaccine Design

Accelerate the discovery of promising designs

Application #2: Nanoporous Materials Design

Sustainability applications

- Storing gases (e.g., hydrogen powered cars)
- Separating gases (e.g., carbon dioxide from flue gas of coalfired power plants)
- Detecting gases (e.g., detecting pollutants in outdoor air)

Combinatorial BO: The Problem

Goal: find optimized combinatorial structures

Drug design

Hardware design

Material design

Many other science and engineering applications

Combinatorial BO: The Problem

• **Given:** a combinatorial space of structures X (e.g., sequences, graphs) and an expensive black-box function $f(x \in X)$ to evaluate each structure $x \in X$

• Find: optimized combinatorial structure x^*

$$x^* = \arg \max_{x \in X} f(x)$$

• Evaluation: number of function evaluations to (approximately) optimize f(x)

Combinatorial BO: Challenges

• Goal: find optimized combinatorial structures

Drug design

Hardware design

Material design

Challenges

- Evaluating each candidate design is expensive
- Large combinatorial space of designs (e.g., sequences, graphs)

Combinatorial BO: Technical Challenges

• Effective modeling over combinatorial structures (e.g., sequences, graphs)

Solving hard combinatorial optimization problem to select next structure

Definition of Combinatorial Space

• Space of binary structures $X = \{0,1\}^n$

- ▲ Each structure $x \in X$ be represented using n binary variables $x_1, x_2, ..., x_n$
- Categorical variables
 - x_i can take more than two candidate values

• How to deal with categorical variables?

- Option 1: Encode them as binary variables (a common practice)
- Option 2: Modeling and reasoning over categorical variables

Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - BOCS [Baptista et al., 2018]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]
- Complex statistical models and tractable/accurate AFO
 - L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]
 - Reduction to continuous BO [Gómez-Bombarelli et al., 2018]...

Aside: Combinatorial BO vs. Structured Prediction

- Structured prediction (SP) [Lafferty et al., 2001] [Bakir et al., 2007]
 - Generalization of classification to structured outputs (e.g., sequences, trees, and graphs)
 - POS tagging, parsing, information extraction, image segmentation
 - CRFs, Structured Perceptron, Structured SVM

- Complexity of cost function vs. tractability of inference
 - Simple cost functions (e.g., first-order) and tractable inference
 - Complex cost functions (e.g., higher-order) and heuristic inference
 - Learning to search for SP [Daume' et al., 2009] [Doppa et al., 2014]

• Key Difference: Small data vs. big data setting

Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - BOCS [Baptista et al., 2018]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]
- Complex statistical models and tractable/accurate AFO
 - L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]
 - Reduction to continuous BO [Gómez-Bombarelli et al., 2018]...

BOCS Algorithm [Baptista et al., 2018]

- Linear surrogate model over binary structures • $f(x \in X) = \theta^T \cdot \phi(x)$
 - $\phi(x)$ consists of up to Quadratic (second-order) terms
 - $\phi(x) = [x_1, x_2, \dots, x_d, x_1, x_2, x_1, x_3, \dots, x_{d-1}, x_d]$
- Thompson sampling as acquisition function
- Acquisition function optimization
 - Binary quadratic program

$$x_{next} = \arg \max_{x \in \{0,1\}^d} b^T x + x^T A x$$

BOCS Algorithm [Baptista et al., 2018]

- Linear surrogate model over binary structures • $f(x \in X) = \theta^T \cdot \phi(x)$
 - $\phi(x)$ consists of up to Quadratic (second-order) terms
 - $\phi(x) = [x_1, x_2, \dots, x_d, x_1, x_2, x_1, x_3, \dots, x_{d-1}, x_d]$
- Thompson sampling as acquisition fundamental
- Acquisition function optimization
 - Binary quadratic program

May not be sufficient to capture desired dependencies

 $x_{next} = \arg \max_{x \in \{0,1\}^d} b^T x + x^T A x$

BOCS Algorithm [Baptista et al., 2018]

- Linear surrogate model over binary structures • $f(x \in X) = \theta^T \cdot \phi(x)$
 - $\phi(x)$ consists of up to Quadratic (second-order) terms
 - $\ \ \, \bullet \, \phi(x) = [x_1, x_2, \dots, x_d, x_1, x_2, x_1, x_3, \dots, x_{d-1}, x_d]$
- Thompson sampling as acquisition function
- Acquisition function optimization

Binary quadratic program

Cannot handle declarative constraints for valid structures

$$x_{next} = \arg \max_{x \in \{0,1\}^d} b^T x + x^T A x$$

Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - BOCS [Baptista et al., 2018]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]
- Complex statistical models and tractable/accurate AFO
 - L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]
 - Reduction to continuous BO [Gómez-Bombarelli et al., 2018]...

SMAC Algorithm [Hutter et al., 2010, 2011]

- Random forest as surrogate model
 - works naturally for categorical variables
 - Prediction/Unce inty (= empirical mean/variance over trees)

Uncertainty estimates

Expected impr

can be poor

n function

Hand-designed local search with restarts for AFO

SMAC Algorithm [Hutter et al., 2010, 2011]

- Random forest as surrogate model
 - works naturally for categorical variables
 - Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Can potentially get stuck in local optima

• GP with diffusion kernel [Kondor and Lafferty 2002]

 \clubsuit Requires a graph representation of the input space X

$$K(V,V) = exp(-\beta L(G))$$

Expected improvement as acquisition function

Local search with random restarts for AFO

• GP with diffusion kernel [Kondor and Lafferty 2002]

 \clubsuit Requires a graph representation of the input space X

$$K(V,V) = exp(-\beta L(G))$$

Combinatorial graph representation [Oh et al., 2019]

• GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space X

$$K(V,V) = exp(-\beta L(G))$$

- Combinatorial graph representation [Oh et al., 2019]
 - Graph Cartesian product of subgraphs

- GP with diffusion kernel [Kondor and Lafferty 2002]
 - Requires a presentation of the input space X

Cannot use SOTA acquisition functions if we cannot sample functions from GP posterior

Expected improvement as acquisition function

Local search with random restarts for AFO

• GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space X

$$K(V,V) = exp(-\beta L(G))$$

Expected improvement as acquisition function

Local search with random restarts for AFO

Can potentially get stuck in local optima

Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - BOCS [Baptista et al., 2018]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]
- Complex statistical models and tractable/accurate AFO
 - L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]
 - Reduction to continuous BO [Gómez-Bombarelli et al., 2018]...

MerCBO Algorithm [Deshwal et al., 2021]

- Same surrogate model as COMBO
 - GP with discrete diffusion kernel and graph representation
- Thompson sampling as acquisition function
 - Mercer features allow sampling functions from GP posterior
- Acquisition function optimization
 - Binary quadratic program
 - Parametrized submodular relaxation (PSR) solver

$$x_{next} = \arg \max_{x \in \{0,1\}^d} b^T x + x^T A x$$

MerCBO Algorithm [Deshwal et al., 2021]

- Same surrogate model as COMBO
 - GP with discrete diffusion kernel and graph representation
- Thompson sampling as acquisition function
 - Mercer features allow sampling functions from GP posterior
- Acquisition function optimization
 - Binary quadratic program
 - Parametrized submodular relaxation (PSR) solver

$$x_{next} = \arg \max_{x \in \{0,1\}^d} b^T x + x^T A x$$

MerCBO: Acquisition Function

Mercer features allow sampling functions from GP posterior

- Missing puzzle to leverage prior acquisition functions
 - Thompson Sampling (TS)
 - Predictive Entropy Search (PES)
 - Max-value Entropy Search (MES)

BO for continuous spaces

BO for discrete spaces

 Key Idea: exploit the structure of combinatorial graph G to compute its eigenspace in closed-form

 Key Idea: exploit the structure of combinatorial graph G to compute its eigenspace in closed-form

 \Box Graph Laplacian L(G) decomposes over those of sub-graphs

 $L(G) = L(G_1) \oplus L(G_2) \oplus L(G_3)$

⊕ is Kronecker sum operator

 Key Idea: exploit the structure of combinatorial graph G to compute its eigenspace in closed-form

 \Box Graph Laplacian L(G) decomposes over those of sub-graphs

 $L(G) = L(G_1) \oplus L(G_2) \oplus L(G_3)$

⊕ is Kronecker sum operator

□ [Hammack et al., 2011] Given two graphs G_1 and G_2 with the eigenspace of their Laplacians being $\{\lambda_1, U_1\}$ and $\{\lambda_2, U_2\}$ respectively, the eigenspace of $L(G_1 \cup G_2)$ is given by $\{\lambda_1 \bowtie \lambda_2, U_1 \otimes U_2\}$.

 Key Idea: exploit the structure of combinatorial graph G to compute its eigenspace in closed-form

 \Box Graph Laplacian L(G) decomposes over those of sub-graphs

 $L(G) = L(G_1) \oplus L(G_2) \oplus L(G_3)$ \oplus is Kronecker sum operator

□ [Hammack et al., 2011] Given two graphs G_1 and G_2 with the eigenspace of their Laplacians being $\{\lambda_1, U_1\}$ and $\{\lambda_2, U_2\}$ respectively, the eigenspace of $L(G_1 \bigcirc G_2)$ is given by $\{\lambda_1 \bowtie \lambda_2, U_1 \bigotimes U_2\}$.

□ Each *G_i* has eigenvalue {0,2} and eigenvectors {[1, 1], [1, -1]}

 Key Idea: exploit the structure of combinatorial graph G to compute its eigenspace in closed-form

• Eigenvalue set: {0, 2, ..., 2*n*}

• j^{th} eigenvalue occurs with $\binom{n}{j}$ multiplicity

Eigenvector set: Hadamard matrix (H) of order 2ⁿ

$$H_{ij} = (-1)^{\langle r_i, r_j \rangle}$$

$$K(x_1, x_2) = \sum_{i=0}^{2^n - 1} e^{-\beta \lambda_i} u_i([x_1]) u_j([x_2])$$

$$K(x_1, x_2) = \sum_{i=0}^{2^n - 1} e^{-\beta \lambda_i} - 1^{< r_i, x_1 > -1^{< r_i, x_2 > -1^{< r_i,$$

 $K(x_1, x_2) = \boldsymbol{\phi}(x_1)^T \boldsymbol{\phi}(x_2)$

$$\phi(x)_i = \{\sqrt{e^{-\beta\lambda_i}} - \mathbf{1}^{< r_{i,} x >}\}$$

$$K(x_1, x_2) = \sum_{i=0}^{2^n - 1} e^{-\beta \lambda_i} - 1^{< r_i, x_1 > -1^{< r_i, x_2 > -1^{< r_i,$$

 $K(x_1, x_2) = \boldsymbol{\phi}(x_1)^T \boldsymbol{\phi}(x_2)$

$$\phi(x)_i = \{\sqrt{e^{-\beta\lambda_i}} - \mathbf{1}^{< r_i, x>}\}$$

jth order Mercer features: first *j* distinct eigenvalues

MerCBO Algorithm [Deshwal et al., 2021]

- Same surrogate model as COMBO
 - GP with discrete diffusion kernel and graph representation
- Thompson sampling as acquisition function
 - Mercer features allow sampling functions from GP posterior

- Acquisition function optimization
 - Binary quadratic program
 - Parametrized submodular relaxation (PSR) solver

$$x_{next} = \arg \max_{x \in \{0,1\}^d} b^T x + x^T A x$$

MerCBO: Acquisition Function Optimization

$$x_{next} = \arg \max_{x \in \{0,1\}^n} b^T x + x^T A x$$

Parametrized Submodular Relaxation (PSR) solver

Construct a Λ-parametrized submodular relaxation

Inspired by work on prescriptive price optimization [Ito and Fujimaki, 2016] 35

MerCBO Results #1: Order of Features

Second-order features provide the best trade-off

Tractability and good overall BO performance

MerCBO Results #1: Order of Features

Second-order features provide the best trade-off

Tractability and good overall BO performance

MerCBO Results #2: Comparison with State-of-the-art

• MerCBO outperforms prior methods

MerCBO Results #2: Comparison with State-of-the-art

MerCBO outperforms prior methods

MerCBO for Biological Sequence Design

 Design of optimized biological structures such as DNA and proteins have many medical applications

Biological Sequence Design: Three Desiderata

Diversity

uncover a diverse set of structures

Parallel experiments

Select a batch of structures for evaluation in each round

Real-time accelerated design

Use parallel experimental resources to accelerate optimization

MerCBO Results #3: Real-time acceleration

• TS is better than EI for real-time accelerated design

MerCBO Results #3: Real-time acceleration

• TS improvement over EI increases with batch size

MerCBO Results #4: Diversity of sequences

• TS is better than El for diversity of sequences

MerCBO Results #4: Diversity of sequences

• TS improvement over EI increases with batch size

Learning to Search Framework [Deshwal et al., 2021]

• Use machine learning to improve the accuracy of search

 Continuously update the search control knowledge using the training data generated from the previous search experience

Aggregate training data

Learning to Search Framework [Deshwal et al., 2021]

Defines a new family of search-style BO approaches

 Can work with any complex statistical model and acquisition function

 Can handle complex domain constraints to select ``valid'' structures for evaluation

• Key Idea: Convert discrete space into continuous space

Train a deep generative model (VAE) using unsupervised structures

- Perform BO in the learned continuous latent space
 - Surrogate modeling and acquisition function optimization in latent space (vs. combinatorial space)

BO in the learned latent space

BO in the learned latent space

BO in the learned latent space

- Some recent work to address this challenge
 - Griffiths R.-R. and Hernández-Lobato J. M.: Constrained Bayesian optimization for Automatic Chemical Design Using Variational Autoencoders, Chemical Science, 2019

• BO in the learned latent space

• Challenges

- Doesn't (explicitly) incorporate information about decoded structures
- Surrogate model may not generalize well for small data setting

Improve Latent Space via Weighted Retraining [Tripp et al., 2020]

Periodically retrain the deep generative model

 Assign importance weights to training data proportional to their objective function value

Improve Latent Space via Weighted Retraining [Tripp et al., 2020]

Periodically retrain the deep generative model

 Assign importationally to their object
 Computationally expensive

ng data proportional

Improve Latent Space via Weighted Retraining [Tripp et al., 2020]

Periodically retrain the deep generative model

 Assign importance weights to training data proportional to their objective function value

Overall approach is not effective for small-data setting

Uncertainty-guided Latent Space BO [Notin et al., 2021]

 Leverage the epistemic uncertainty of the decoder to guide the optimization process

 Importance sampling-based estimator for uncertainty quantification over high-dimensional discrete structures

No retraining of deep generative model is needed

LADDER Algorithm [Deshwal and Doppa, 2021]

Latent space \mathcal{Z}

LADDER Algorithm [Deshwal and Doppa, 2021]

 Key Idea: Combines the complementary strengths of deep generative models and structured kernels for better surrogate modeling

Structure-Coupled Kernel

Structure-coupled kernel (c) combines

 Continuous kernels over latent space Z (e.g., Matern)
 Structured kernels (e.g., generic/hand-designed strings, graphs)

• Key Idea

 \odot Extrapolate <u>eigenfunctions</u> of the latent space kernel matrix L with basis functions from the structured kernel k

$$c(z, z') = k_z^T K^{-1} L K^{-1} k_{z'}$$

- Generalized Nystrom Extension [Ref]
 - k acts like a smooth extrapolating kernel

Latent Space BO Results #1

• LADDER outperforms latent space BO real benchmarks

Arithmetic expression task

Chemical design task

Latent Space BO Results #2

• LADDER is competitive or better than state-of-the-art methods

Arithmetic expression task

Chemical design task

Code and Software

- MerCBO: <u>https://github.com/aryandeshwal/MerCBO</u>
- LADDER: https://github.com/aryandeshwal/LADDER
- BOPS: <u>https://github.com/aryandeshwal/BOPS</u>
- COMBO: https://github.com/QUVA-Lab/COMBO
- SMAC: <u>https://github.com/automl/SMAC3</u>

Questions ?