Bayesian Optimization
over Hybrid Spaces



BO Over Hybrid Spaces: The Problem

° Goal: find optimized hybrid structures via expensive
experiments

“ x = mixture of x; (discrete) and x, (continuous) variables
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Microbiome design Material design Hyper-parameter tuning / Auto ML

°* Many other science, engineering, industrial applications



Hybrid BO: Technical Challenges
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° Effective modeling over hybrid structures (capture complex interactions
among discrete and continuous variables)

° Solving hard optimization problem over hybrid spaces to select next
structure




Hybrid BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ MiVaBO [Daxberger et al., 2019]

° Complex statistical models and heuristic search for AFO

“ SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al.,
2021]

° Complex statistical models and tractable/accurate AFO

4 Reduction to continuous BO: GEBO [Ahn et al.,, 2022]
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MiVaBO [Daxberger et al., 2019]

° Linear surrogate model over binary structures

~fxeX)=0".¢x)
“ ¢(x) consists of continuous (random Fourier features),

discrete (BOCS representation for binary variables), and mixed
(products of all pairwise combinations) features

°* Thompson sampling as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)
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SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model
~ works naturally for categorical/continuous variables
~ Prediction/Uncertainty (= empirical mean/variance over trees)

° Expected improvement as acquisition function

° Hand-designed local search with restarts for AFO
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SMAC Algorithm [Hutter et al, 2010, 2011]
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SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model
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~ Prediction/Uncertainty (= empirical mean/variance over trees)

° Expected improvement as acquisition function

° Hand-designed local search with restarts for AFO

S

Can potentially get
stuck in local optima
N

~

)

12



HVBO Algorlthm [Deshwal et al., 2021]

° GP surrogate model with additive diffusion kernels

° Expected improvement as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)
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HyBO Algorithm [peshwal et al., 2021]

° GP surrogate model with additive diffusion kernels

“ Exploits the general recipe of additive kernels [Duvenaud et al., 2011]

~ |nstantiation w/ discrete & continuous diffusion kernels

“ Bayesian treatment of the hyper-parameters
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HVBO Algorlthm [Deshwal et al., 2021]

° GP surrogate model with additive diffusion kernels
° Expected improvement as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1

“ Repeat (if needed) »
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Hybrid BO: Experimental Results #1
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* HyBO performs significantly better than prior methods
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Hybrid BO: Experimental Results #2
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* HyBO’s better BO performance is due to better surrogate model
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BO-FM Algorithm [ohetal, 2021]

° GP surrogate model with frequency modulation kernels

° Expected improvement as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)
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BO-FM Algorithm [ohetal, 2021]

° GP surrogate model with frequency modulation kernels

° Key idea: Generalize the COMBO kernel [oh et al., 2019] by
parametrizing via a function of continuous variables

ememper tne

K=UTexp(—BZ)U L COMBO kernel

K=UTf( X, XU

° Requirement on f for K to be a positive definite kernel

“ f should be positive definite w.r.t X, X,
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Code and Software

° HyBO: https://github.com/aryandeshwal/HyBO

°* SMAC: https://github.com/automl/SMAC3

20


https://github.com/aryandeshwal/HyBO
https://github.com/automl/SMAC3

Questions ?
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