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Bayesian Optimization 
over Hybrid Spaces
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BO Over Hybrid Spaces: The Problem

Goal: find optimized hybrid structures via expensive 
experiments
 𝑥𝑥 = mixture of 𝑥𝑥𝑑𝑑 (discrete) and 𝑥𝑥𝑐𝑐 (continuous) variables 

Many other science, engineering, industrial applications
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Hybrid BO: Technical Challenges

 Effective modeling over hybrid structures (capture complex interactions 
among discrete and continuous variables)

 Solving hard optimization problem over hybrid spaces to select next 
structure

Statistical model M Acquisition function 
optimization (AFO)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
MiVaBO [Daxberger et al., 2019]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al., 

2021]

Complex statistical models and tractable/accurate AFO
Reduction to continuous BO: GEBO [Ahn et al.,, 2022]
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MiVaBO [Daxberger et al., 2019]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of continuous (random Fourier features), 

discrete (BOCS representation for binary variables), and mixed 
(products of all pairwise combinations) features

Thompson sampling as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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May not be sufficient to capture 
desired dependencies
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical/continuous variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Uncertainty estimates 
can be poor
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HyBO Algorithm [Deshwal et al., 2021]

GP surrogate model with additive diffusion kernels

Expected improvement as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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HyBO Algorithm [Deshwal et al., 2021]

GP surrogate model with additive diffusion kernels

Exploits the general recipe of additive kernels [Duvenaud et al., 2011]

 Instantiation w/ discrete & continuous diffusion kernels
Bayesian treatment of the hyper-parameters
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HyBO Algorithm [Deshwal et al., 2021]

GP surrogate model with additive diffusion kernels

Expected improvement as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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Hybrid BO: Experimental Results #1

 HyBO performs significantly better than prior methods
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Hybrid BO: Experimental Results #2

 HyBO’s better BO performance is due to better surrogate model
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BO-FM Algorithm [Oh et al., 2021]

GP surrogate model with frequency modulation kernels

Expected improvement as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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BO-FM Algorithm [Oh et al., 2021]

GP surrogate model with frequency modulation kernels

Key idea: Generalize the COMBO kernel [Oh et al., 2019] by 
parametrizing via a function of continuous variables

Requirement on 𝑓𝑓 for K to be a positive definite kernel
𝑓𝑓 should be positive definite w.r.t 𝑋𝑋𝑐𝑐 ,𝑋𝑋𝑐𝑐𝑐

K = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Remember the 
COMBO kernelK = 𝑈𝑈𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 −𝛽𝛽Σ 𝑈𝑈

K = 𝑈𝑈𝑇𝑇𝑓𝑓(Σ,𝑋𝑋𝑐𝑐 ,𝑋𝑋𝑐𝑐𝑐)𝑈𝑈
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Code and Software

HyBO:  https://github.com/aryandeshwal/HyBO

SMAC: https://github.com/automl/SMAC3

https://github.com/aryandeshwal/HyBO
https://github.com/automl/SMAC3
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Questions ?
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