Bayesian Optimization over Hybrid Spaces

BO Over Hybrid Spaces: The Problem

- Goal: find optimized hybrid structures via expensive experiments
 - $x = mixture of x_d$ (discrete) and x_c (continuous) variables

Microbiome design

Material design

Hyper-parameter tuning / Auto ML

Many other science, engineering, industrial applications

Hybrid BO: Technical Challenges

- Effective modeling over hybrid structures (capture complex interactions among discrete and continuous variables)
- Solving hard optimization problem over hybrid spaces to select next structure

Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - MiVaBO [Daxberger et al., 2019]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021], BO-FM [Oh et al., 2021]
- Complex statistical models and tractable/accurate AFO
 - Reduction to continuous BO: GEBO [Ahn et al.,, 2022]

Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - MiVaBO [Daxberger et al., 2019]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021], BO-FM [Oh et al., 2021]
- Complex statistical models and tractable/accurate AFO
 - Reduction to continuous BO: GEBO [Ahn et al.,, 2022]

MiVaBO [Daxberger et al., 2019]

- Linear surrogate model over binary structures
 - $f(x \in X) = \theta^T . \phi(x)$
 - φ(x) consists of continuous (random Fourier features), discrete (BOCS representation for binary variables), and mixed (products of all pairwise combinations) features
- Thompson sampling as acquisition function
- Alternating search for acquisition function optimization
 - Step 1: Search over continuous sub-space
 - Step 2: Search over discrete sub-space using output of Step #1
 - Repeat (if needed)

MiVaBO [Daxberger et al., 2019]

- Alternating search for acquisition function optimization
 - Step 1: Search over continuous sub-space
 - Step 2: Search over discrete sub-space using output of Step #1
 - Repeat (if needed)

MiVaBO [Daxberger et al., 2019]

- Linear surrogate model over binary structures
 - $f(x \in X) = \theta^T . \phi(x)$
 - φ(x) consists of continuous (random Fourier features), discrete (BOCS representation for binary variables), and mixed (products of all pairwise combinations) features
- Thompson sampling as acquisition function
- Alternating search for acquisition function optimization
 - Step 1: Searce or continuous sub-space
 - Step 2: Se Can potentially get
 - Repeat (i stuck in local optima

bace using output of Step #1

Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

- Simple statistical models and tractable search for AFO
 - MiVaBO [Daxberger et al., 2019]

- Complex statistical models and heuristic search for AFO
 - SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021], BO-FM [Oh et al., 2021]
- Complex statistical models and tractable/accurate AFO
 - Reduction to continuous BO: GEBO [Ahn et al.,, 2022]

SMAC Algorithm [Hutter et al., 2010, 2011]

- Random forest as surrogate model
 - works naturally for categorical/continuous variables
 - Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

SMAC Algorithm [Hutter et al., 2010, 2011]

- Random forest as surrogate model
 - works naturally for categorical variables
 - Prediction/Unce inty (= empirical mean/variance over trees)

Uncertainty estimates

Expected impression

can be poor

n function

Hand-designed local search with restarts for AFO

SMAC Algorithm [Hutter et al., 2010, 2011]

- Random forest as surrogate model
 - works naturally for categorical variables
 - Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Can potentially get stuck in local optima

HyBO Algorithm [Deshwal et al., 2021]

• GP surrogate model with additive diffusion kernels

Expected improvement as acquisition function

- Alternating search for acquisition function optimization
 - Step 1: Search over continuous sub-space
 - Step 2: Search over discrete sub-space using output of Step #1
 - Repeat (if needed)

HyBO Algorithm [Deshwal et al., 2021]

- GP surrogate model with additive diffusion kernels
 - Exploits the general recipe of additive kernels [Duvenaud et al., 2011]
 - Instantiation w/ discrete & continuous diffusion kernels
 - Bayesian treatment of the hyper-parameters

$$\mathcal{K}_{HYB} = \sum_{p=1}^{m+n} \left(\theta_p^2 \sum_{i_1, \cdots, i_p} \prod_{d=1}^p k_{i_d}(x_{i_d}, x'_{i_d}) \right)$$

HyBO Algorithm [Deshwal et al., 2021]

• GP surrogate model with additive diffusion kernels

Expected improvement as acquisition function

- Alternating search for acquisition function optimization
 - Step 1: Search over continuous sub-space
 - Step 2: Search over discrete sub-space using output of Step #1
 - Repeat (if needed)

Can potentially get stuck in local optima

Hybrid BO: Experimental Results #1

HyBO performs significantly better than prior methods

Hybrid BO: Experimental Results #2

• HyBO's better BO performance is due to better surrogate model

BO-FM Algorithm [Oh et al., 2021]

GP surrogate model with frequency modulation kernels

Expected improvement as acquisition function

- Alternating search for acquisition function optimization
 - Step 1: Search over continuous sub-space
 - Step 2: Search over discrete sub-space using output of Step #1
 - Repeat (if needed)

BO-FM Algorithm [Oh et al., 2021]

GP surrogate model with frequency modulation kernels

 Key idea: Generalize the COMBO kernel [Oh et al., 2019] by parametrizing via a function of continuous variables

$$K = exp(-\beta L(G))$$

$$K = U^{T} exp(-\beta \Sigma)U$$

$$K = U^{T} f(\Sigma, X_{c}, X_{ct})U$$

$$K = U^{T} f(\Sigma, X_{c}, X_{ct})U$$

- Requirement on *f* for K to be a positive definite kernel
 - f should be positive definite w.r.t X_c , $X_{c'}$

Code and Software

- HyBO: https://github.com/aryandeshwal/HyBO
- SMAC: https://github.com/automl/SMAC3

Questions ?