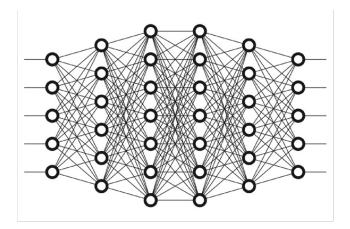
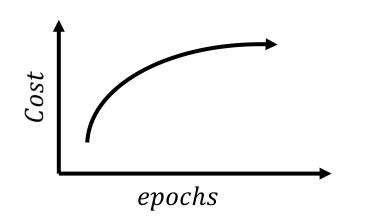
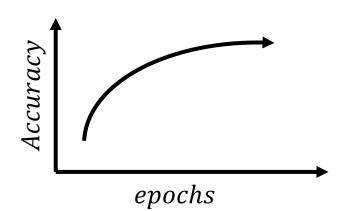
Multi-Fidelity Bayesian Optimization

Application #1: Auto ML and Hyperparameter Tuning



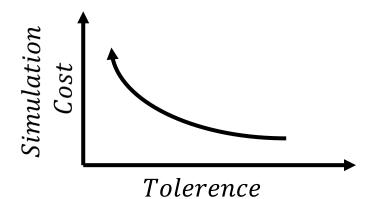
Cost vs. Accuracy trade-offs in evaluating hyperparameter configurations

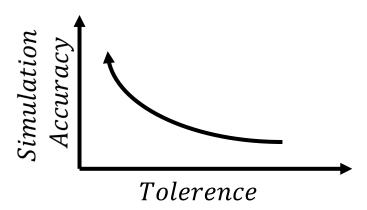




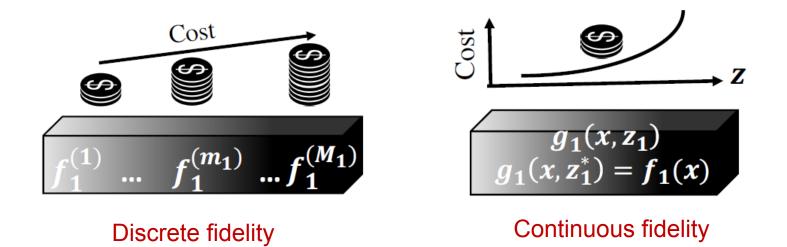
Application #2: Hardware Design via Simulations

Cost vs. Accuracy trade-offs in evaluating hardware designs





Multi-Fidelity BO: The Problem



- Cost vs. accuracy trade-offs for function approximations
- Continuous-fidelity is the most general case
 - Discrete-fidelity is a special case
- Goal: (approximately) optimize the highest-fidelity function by minimizing the resource cost of experiments

Multi-Fidelity BO: Key Challenges

 Intuition: use cheap (low-fidelity) experiments to gain information and prune the input space; and use costly (high-fidelity) experiments on promising candidates

 Modeling challenge: How to model multi-fidelity functions to allow information sharing?

 Reasoning challenge: How to select the input design and fidelity pair in each BO iteration?

Multi-Fidelity GPs for Modeling

 Desiderata: model relationship/information sharing between different fidelities

Solution: multi-output GPs with vector-valued kernels

$$k(\{x, z\}, \{x', f\}) = k(x, x')k_F(z, f)$$

• Provides a prediction μ and uncertainty σ for each input and fidelity pair

El Extension for Multi-Fidelity BO

- Multi-fidelity expected improvement (MF-EI)
 - Extension of EI for multi-fidelity setting
 - Applicable for discrete-fidelity setting

$$EI(x,z) = E\left[\max\left(\tau-y^f\right)\right] cov[y^z,y^f]C_f/C_z$$

- Acquisition function optimization
 - Enumerate each fidelity z and find the best x fixing z

Information-Theoretic Extensions for Multi-Fidelity BO

 $AF(x) = H(\alpha \mid D) - E_{y}[H(\alpha \mid D \cup \{x, y\})]$ = Information Gain(\alpha; y)

- Design choices of α leads to different algorithms
- α as input location of optima x^*
 - Entropy Search (ES) / Predictive Entropy Search (PES)
 - Intuitive but requires expensive approximations
- α as output value of optima y^*
 - Max-value Entropy Search (MES) and it's variants
 - Computationally cheaper and more robust

Information-Theoretic Extensions for Multi-Fidelity BO

 $AF(x, z) = H(\alpha \mid D) - E_y[H(\alpha \mid D \cup \{x, z, y\})]$ = Information Gain per Unit Cost(\alpha; y)

- Design choices of α leads to different algorithms
 - α as input location of optima x^*
 - MF-Predictive Entropy Search (MF-PES)
 - Intuitive but requires expensive approximations
 - α as output value of optima y^*
 - MF Max-value Entropy Search (MF-MES)
 - Computationally cheaper and more robust

Continuous-Fidelity BO: BOCA Algorithm

Two step procedure to select input *x* and fidelity *z* separately

Selection of input *x*

• Optimize UCB $(y^{f}(x) + \beta \sigma^{f}(x))$ of highest fidelity

Selection of fidelity z

- Reducing fidelity space: $Z_t = \{f\} \cup \{z: \sigma^z(x_{opt}) \ge \gamma(z)\}$
- If Z_t is not empty, select the cheapest fidelity from it
- Otherwise, select the highest-fidelity

Code and Software

- Multi-fidelity modeling
 - <u>https://mlatcl.github.io/mlphysical/lectures/05-02-</u> <u>multifidelity.html</u>
- BOTorch
 - <u>https://botorch.org/tutorials/discrete_multi_fidelity_bo</u>

Questions ?