Multi-Objective Bayesian Optimization

Application #1: Drug/Vaccine Design

Credit: MIMA healthcare

Accelerate the discovery of promising designs

Application #2: Hardware Design for Datacenters

America's Data Centers Are Wasting Huge Amounts of Energy

By 2020, data centers are projected to consume roughly 140 billion kilowatt-hours annually, costing American businesses \$13 billion annually in electricity bills and emitting nearly 150 million metric tons of carbon pollution

Report from Natural Resources Defense Council:. https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

High-performance and Energyefficient manycore chips

Power

Multi-Objective Optimization: The Problem

 Goal: Find designs with optimal trade-offs by minimizing the total resource cost of experiments

Multi-Objective Optimization: Key Challenge

Optimize multiple conflicting objective functions

Multi-Objective Optimization: The Solution

- Set of input designs with optimal trade-offs called the optimal Pareto set χ^*
- Corresponding set of function values called optimal pareto front Pareto front Y^*

Pareto hypervolume
 measures the quality of
 a Pareto front

Single => Multi-Objective BO

- Challenge #1: Statistical modeling
 - Typically, one GP model for each objective function (tractability)
- Challenge #2: Acquisition function design
 - Capture the trade-off between multiple objectives

Multi-Objective BO: Summary of Approaches

- Reduction to single-objective via scalarization
 - ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019]
- Hypervolume improvement
 - EHI [Emmerich et al., 2008], SUR [Picheny et al., 2015], SMSego [Ponweiser et al., 2008], qEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020]
- Wrapper methods via single-objective acquisition functions
 - USeMO [Belakaria et al., 2020]
- Information-theoretic methods
 - ▲ *E*-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO [Belakaria et al., 2019]

Multi-Objective BO: Summary of Approaches

- Reduction to single-objective via scalarization
 - ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019]
- Hypervolume improvement
 - EHI [Emmerich et al., 2008], SUR [Picheny et al., 2015], SMSego [Ponweiser et al., 2008], qEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020]
- Wrapper methods via single-objective acquisition functions
 - USeMO [Belakaria et al., 2020]
- Information-theoretic methods
 - ▲ *E*-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO [Belakaria et al., 2019]

Reduction via Random Scalarization

Reduce the problem to single objective optimization

- ParEGO [Knowles et al., 2006]
 - BO over scalarized objective function using EI

$$f(x) = \sum_{i=1}^{k} \lambda_i f_i(x)$$

Scalar weights are sampled from a uniform distribution

MOBO-RS [Paria et al., 2019]

 Optimize scalarized objective function over a set of scalar weight-vectors using a prior specified by the user

Reduction via Random Scalarization

- ParEGO [Knowles et al., 2006]
 - BO over scalarized objective function using EI

$$f(x) = \sum_{i=1}^{k} \lambda_i . f_i(x)$$

- Scalar weights are sampled from a uniform distribution
- MOBO-RS [Paria et al., 2019]
 - Optimize scalarized objective function over a set of scalar weight-vectors using a prior specified by the user

Hard to define the scalars or specify priors over scalars, which can lead to sub-optimal results

Multi-Objective BO: Summary of Approaches

- Reduction to single-objective via scalarization
 - ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019]
- Hypervolume improvement
 - EHI [Emmerich et al., 2008], SUR [Picheny et al., 2015], SMSego [Ponweiser et al., 2008], qEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020]
- Wrapper methods via single-objective acquisition functions
 - USeMO [Belakaria et al., 2020]
- Information-theoretic methods
 - ▲ *E*-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO [Belakaria et al., 2019]

Hypervolume Improvement Approaches

- EHI: Expected improvement in PHV [Emmerich et al., 2008]
- SUR: Probability of improvement in PHV [Picheny et al., 2015]
- SMSego [Ponweiser et al., 2008]
 - Improves the scalability of PHV computation by automatically reducing the search space

- **qEHVI** [Daulton et al., 2020]
 - Differentiable hypervolume improvement

qEHVI Algorithm [Daulton et al., 2020]

Parallel EHVI via the Inclusion-Exclusion Principle

- Practical since q is usually small
- The computation of all intersections be parallelized
- The formulation simplifies computation of overlapping hypervolumes

qEHVI Algorithm [Daulton et al., 2020]

• Differentiable Hypervolume Improvement

- Sample path gradients via the reparameterization trick
- Unbiased gradient estimator

$$\mathbb{E}[\nabla_{x} \alpha_{qEHVI}(x)] = \nabla_{x} \alpha_{qEHVI}(x)$$

qEHVI Algorithm [Daulton et al., 2020]

Vehicle Crash Safety

Hypervolume Improvement Approaches

- EHI: Expected improvement in PHV [Emmerich et al., 2008]
- SUR: Probability of improvement in PHV [Picheny et al., 2015]
- SMSego [Ponweiser et al., 2008]
 - Improves the scalability of PHV computation by automatically reducing the search space
- **qEHVI** [Daulton et al., 2020]
 - Differentiable hypervo

Can potentially lead to more exploitation behavior resulting in sub-optimal solutions

Multi-Objective BO: Summary of Approaches

- Reduction to single-objective via scalarization
 - ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019]
- Hypervolume improvement
 - EHI [Emmerich et al., 2008], SUR [Picheny et al., 2015], SMSego [Ponweiser et al., 2008], qEHVI [Daulton et al., 2020]
- Wrapper methods via single-objective acquisition functions
 - USeMO [Belakaria et al., 2020]
- Information-theoretic methods
 - ▲ *E*-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO [Belakaria et al., 2019]

USeMO Framework [Belakaria et al., 2020]

USeMO Framework [Belakaria et al., 2020]

 Allows us to leverage acquisition functions from singleobjective BO to solve multi-objective BO problems

USeMO Framework [Belakaria et al., 2020]

 Allows us to leverage acquisition functions from singleobjective BO to solve multi-objective BO problems

Multi-Objective BO: Summary of Approaches

- Reduction to single-objective via scalarization
 - ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019]
- Hypervolume improvement
 - EHI [Emmerich et al., 2008], SUR [Picheny et al., 2015], SMSego [Ponweiser et al., 2008], qEHVI [Daulton et al., 2020]
- Wrapper methods via single-objective acquisition functions
 - USeMO [Belakaria et al., 2020]
- Information-theoretic methods
 - ▲ *E*-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO [Belakaria et al., 2019]

E-PAL Algorithm [Zuluaga et al., 2013]

- Classifies candidate inputs into three categories using the learned GP models
 - Pareto-optimal
 - Not Pareto-optimal
 - Uncertain

• In each iteration, selects the candidate input for evaluation to minimize the size of uncertain set

Accuracy of pruning depends critically on
 e value

E-PAL Algorithm [Zuluaga et al., 2013]

- Classifies candidate inputs into three categories using the learned GP models
 - Pareto-optimal
 - Not Pareto-optimal
 - Uncertain

Limited applicability as it works only for discrete set of candidate inputs

• In each iteration, selects the candidate input for evaluation to minimize the size of uncertain set

Accuracy of pruning depends critically on *e* value

• Key Idea: select the input that maximizes the information gain about the optimal Pareto set χ^*

• <u>Reminder:</u> Set of input designs with optimal trade-offs is called the optimal Pareto set χ^*

$$\begin{aligned} \alpha(x) &= I(\{x, y\}, \chi^* | D) \\ &= H(\chi^* | D) - \mathbb{E}_y [H(\chi^* | D \cup \{x, y\})] \\ &= H(y | D, x) - \mathbb{E}_{\chi^*} [H(y | D, x, \chi^*)] \end{aligned}$$

• Key Idea: select the input that maximizes the information gain about the optimal Pareto set χ^*

$$\alpha(x) = I(\{x, y\}, \chi^* | D)$$

= $H(\chi^* | D) - \mathbb{E}_y[H(\chi^* | D \cup \{x, y\})]$
= $H(-D, x) - \mathbb{E}_{\chi^*}[H(y | D, x, \chi^*)]$

Equivalent to expected reduction in entropy over the pareto set χ^*

$$\alpha(x) = I(\{x, y\}, \chi^* | D)$$

= $H(\chi^* | D) - \mathbb{E}_{\mathcal{Y}}[H(\chi^* | D \cup \{x, y\})]$
= $H(y|D, x) - \mathbb{E}_{\chi^*}[H(y | D, x, \chi^*)]$
Due to symmetric property
of information gain

$$\alpha(x) = I(\{x, y\}, \chi^* | D)$$

= $H(\chi^* | D) - \mathbb{E}_y[H(\chi^* | D \cup \{x, y\})]$
= $H(y|D, x) - \mathbb{E}_{\chi^*}[H(y | D, x, \chi^*)]$
Entropy of factorizable
Gaussian distribution

input dimension
$$d$$

$$\alpha(x) = I(\{x, y\}, \chi^* | D)$$

$$= H(\chi^* | D) - \mathbb{E}_y [H(\chi^* | D \cup \{x, y\})]$$

$$= H(y|D, x) - \mathbb{E}_{\chi^*} [H(y | D, x, \chi^*)]$$
Requires computationally
expensive approximation using
expectation propagation

 Key Idea: select the input that maximizes the information gain about the optimal Pareto front Y*

• <u>Reminder:</u> Set of function values corresponding to the optimal Pareto set χ^* is called the optimal Pareto front Y^*

$$\begin{aligned} \alpha(x) &= I(\{x, y\}, Y^* | D) \\ &= H(Y^* | D) - \mathbb{E}_y [H(Y^* | D \cup \{x, y\})] \\ &= H(y | D, x) - \mathbb{E}_{Y^*} [H(y | D, x, Y^*)] \end{aligned}$$

 Key Idea: select the input that maximizes the information gain about the optimal Pareto front Y*

$$\alpha(x) = I(\{x, y\}, Y^* | D)$$

= $H(Y^* | D) - \mathbb{E}_y[H(Y^* | D \cup \{x, y\})]$
= $H(Y^* | D, x) - \mathbb{E}_{Y^*}[H(y | D, x, Y^*)]$

Equivalent to expected reduction in entropy over the pareto front Y*

$$\alpha(x) = I(\{x, y\}, Y^* | D)$$

= $H(Y^* | D) - \mathbb{E}_y[H(Y^* | D \cup \{x, y\})]$
= $H(y|D, x) - \mathbb{E}_{Y^*}[H(y | D, x, Y^*)]$
Due to symmetric property
of information gain

$$\alpha(x) = I(\{x, y\}, |Y^*||D)$$

= $H(Y^*|D) - \mathbb{E}_y[H(Y^*|D \cup \{x, y\})]$
= $H(y|D, x) - \mathbb{E}_{Y^*}[H(y|D, x, Y^*)]$
Entropy of factorizable
Gaussian distribution

Output dimension
$$k \ll d$$

$$\alpha(x) = I(\{x, y\}, Y^* | D)$$

$$= H(Y^* | D) - \mathbb{E}_y [H(Y^* | D \cup \{x, y\})]$$

$$= H(y|D, x) - \mathbb{E}_{Y^*} [H(y | D, x, Y^*)]$$
Closed form using properties of entropy
and truncated Gaussian distribution

$$\alpha(x) = H(y|D,x) - \mathbb{E}_{Y^*}[H(y|D,x,Y^*)]$$

• The first term is the entropy of a factorizable k-dimensional Gaussian distribution P(y | D, x)

$$H(y|D,x) = \frac{K(1+\ln(2\pi))}{2} + \sum_{j=1}^{k} \ln(\sigma_j(x))$$

$$\alpha(x) = H(y|D,x) - \mathbb{E}_{Y^*}[H(y|D,x,Y^*)]$$

• We can approximately compute the second term via Monte-Carlo sampling (*S* is the number of samples)

$$\mathbb{E}_{Y^*}[H(y \mid D, x, Y^*)] \approx \frac{1}{s} \sum_{s=1}^{s} H(y \mid D, x, Y_s^*)$$

Approximate computation via Monte-Carlo sampling

$$\mathbb{E}_{Y^*}[H(y | D, x, Y^*)] \approx \frac{1}{s} \sum_{s=1}^{s} H(y | D, x, Y_s^*)$$

Two key steps

- How to compute Pareto front samples Y_s^* ?
- How to compute the entropy with respect to a given Pareto front sample Y_s^* ?

Approximate computation via Monte-Carlo sampling

$$\mathbb{E}_{Y^*}[H(y | D, x, Y^*)] \approx \frac{1}{s} \sum_{s=1}^{s} H(y | D, x, Y_s^*)$$

- How to compute Pareto front samples Y_s^* ?
 - Sample functions from posterior GPs via random Fourier features
 - ▲ Solve a cheap MO problem over the sampled functions $\tilde{f}_1 \dots \tilde{f}_k$ to compute sample Pareto front

• How to compute the entropy with respect to a given Pareto front sample Y_s^* ?

$$Y_{s}^{*} = \{ \boldsymbol{v}^{1}, \dots, \boldsymbol{v}^{l} \} with \ \boldsymbol{v}^{i} = \{ v_{1}^{i}, \dots, v_{K}^{i} \}, \\ y_{j} \leq y_{j_{s}}^{*} = \max\{ v_{1}^{1}, \dots, v_{j}^{l} \} \ \forall j \in \{1, \dots, K\}$$

- Decompose the entropy of a set of independent variables into a sum of entropies of individual variables
- Model each component y_i as a truncated Gaussian distribution

• How to compute the entropy with respect to a given Pareto front sample Y_s^* ?

$$Y_{s}^{*} = \{ \boldsymbol{v}^{1}, \dots, \boldsymbol{v}^{l} \} with \ \boldsymbol{v}^{i} = \{ v_{1}^{i}, \dots, v_{K}^{i} \}, y_{j} \leq y_{j_{s}}^{*} = \max\{ v_{1}^{1}, \dots, v_{j}^{l} \} \ \forall j \in \{1, \dots, K\}$$

$$H(y | D, x, Y_s^*) \approx \sum_{j=1}^{K} H(y_j | D, x, y_{j_s}^*)$$

Final acquisition function

$$\alpha(x) \approx \frac{1}{s} \sum_{s=1}^{S} \sum_{j=1}^{K} \left[\frac{\gamma_s^j(x)\phi(\gamma_s^j(x))}{2\phi(\gamma_s^j(x))} - \ln\Phi(\gamma_s^j(x)) \right]$$

Closed form

where
$$\gamma_s^j(x) = \frac{\gamma_{j_s}^* - \mu_j(x)}{\sigma_j(x)}$$
, ϕ and Φ are the p.d.f and c.d.f of a standard normal distribution

MOBO Experiments and Results #1

- MESMO is better than PESMO
- MESMO converges faster
- MESMO is robust to the number of samples (even a single sample)

MOBO Experiments and Results #2

- MESMO is highly scalable when compared to PESMO
- MESMO with one sample is comparable to ParEGO
- Time for PESMO and SMSego increases significantly with the number of objectives

Multi-Objective Bayesian Optimization With Black-Box Constraints

MOBO with Black-Box Constraints: The Problem

Objectives and constraints evaluation of design *x*

• Goal: find the approximate (optimal) constrained Pareto set by minimizing the total resource cost of experiments

MOBO with Black-Box Constraints: The Problem

Amazon Prime Air autonomous unmanned aerial vehicle (UAV)

- Electrified aviation power system design for UAVs [Belakaria et al., 2021]
 - Multiple Objectives: total energy and mass
 - Safety constraints: thresholds for motor temperature and voltage of cells

Extension of MESMO for constrained setting

$$\begin{aligned} \alpha(x) &\approx \frac{1}{s} \sum_{s=1}^{s} \left[\sum_{j=1}^{K} \frac{\gamma_s^{f_j}(x)\phi\left(\gamma_s^{f_j}(x)\right)}{2\phi\left(\gamma_s^{f_j}(x)\right)} - \ln\Phi\left(\gamma_s^{f_j}(x)\right) \right) + \\ &\sum_{j=1}^{L} \frac{\gamma_s^{c_j}(x)\phi\left(\gamma_s^{c_j}(x)\right)}{2\phi\left(\gamma_s^{c_j}(x)\right)} - \ln\Phi\left(\gamma_s^{c_j}(x)\right) \right] \end{aligned}$$

• Solves a cheap MOO over sampled functions ($\tilde{f}_1, ..., \tilde{f}_K$) constrained by sampled constraints ($\tilde{c}_1, ..., \tilde{c}_L$)

$$Y_{s}^{*} \leftarrow \arg \max_{\chi \in \chi} (\widetilde{f_{1}}, \dots, \widetilde{f_{K}})$$

s.t. $(\widetilde{c_{1}} \ge 0, \dots, \widetilde{c_{L}} \ge 0)$

 Acquisition function optimization constrained by predictive mean of constraints

$$x_t \leftarrow \arg \max_{x \in \chi} \alpha_t$$

s.t. $(\mu_{c_1}(x) \ge 0, \dots, \mu_{c_L}(x) \ge 0)$

MESMOC Experiments and Results

- MESMOC finds near-optimal Pareto front in ~250 evaluations out of ~168,000 designs (<1%)
- 95% of the inputs selected by MESMOC are valid, while the best among baselines was only 39%

Multi-Objective Bayesian Optimization With Multi-Fidelity Function Evaluations

Multi-Fidelity Multi-Objective BO: The Problem

- Continuous-fidelity is the most general case
 - Discrete-fidelity is a special case
- Goal: find the approximate (optimal) Pareto set by minimizing the total resource cost of experiments

Multi-Fidelity Multi-Objective BO: Key Challenges

- How to model functions with multiple fidelities?
- How to join Already covered and fidelity-vector pair in each BO iteration?
- How to progressively select higher fidelity experiments?

 Key Idea: Select the input and fidelity-vector that maximizes information gain per unit resource cost about the optimal Pareto front Y*

$$\alpha(\boldsymbol{x}, \boldsymbol{z}) = I(\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}, Y^* | D) / C(\boldsymbol{x}, \boldsymbol{z})$$

= $(H(\boldsymbol{y} | D, \boldsymbol{x}, \boldsymbol{z}) - \mathbb{E}_{Y^*}[H(\boldsymbol{y} | D, \boldsymbol{x}, \boldsymbol{z}, Y^*)]) / C(\boldsymbol{x}, \boldsymbol{z})$
= $(\sum_{j=1}^{K} \ln\left(\sqrt{2\pi e} \sigma_{g_j}(\boldsymbol{x}, z_j)\right)$
 $-\frac{1}{S} \sum_{s=1}^{S} \sum_{j=1}^{K} H(y_j | D, \boldsymbol{x}, z_j, f_s^{j*})) / C(\boldsymbol{x}, \boldsymbol{z})$

where $C(\mathbf{x}, \mathbf{z}) = \sum_{j=1}^{K} \frac{C(\mathbf{x}, z_j)}{C(\mathbf{x}, z_j^*)}$ is the normalized cost over different functions

Assumption: Values at lower fidelities are smaller than maximum value of the highest fidelity $y_j \leq f_s^{j*} \forall j \in \{1, ..., K\}$

Truncated Gaussian approximation (Closed-form)

$$\alpha(\boldsymbol{x}, \boldsymbol{z}) \approx \frac{1}{C(\boldsymbol{x}, \boldsymbol{z})S} \sum_{s=1}^{S} \sum_{j=1}^{K} \left[\frac{\gamma_s^{(g_j)} \phi(\gamma_s^{(g_j)})}{2\Phi(\gamma_s^{(g_j)})} - \ln\Phi\left(\gamma_s^{(g_j)}\right) \right]$$

Where $\gamma_s^{(g_j)} = \frac{f_s^{j*} - \mu_{g_j}}{\sigma_{g_j}}$, ϕ and Φ are the p.d.f and c.d.f of a standard normal distribution

- Challenges of large (potentially infinite) fidelity space
 - Select costly fidelity with less accuracy
 - Tendency to select lower fidelities due to normalization by cost
- iMOCA reduces the fidelity search space using a scheme similar to the BOCA algorithm

iMOCA Experiments and Results

- iMOCA performs better than all baselines
- Both variants of iMOCA converge at a much lower cost
- Robust to the number of samples

iMOCA Experiments and Results

Cost reduction factor

 Although the metric gives advantage to baselines, the results in the table show a consistently high gain ranging from 52% to 85%

Name	BC	ARS	Circuit	Rocket
\mathcal{C}_B	200	300	115000	9500
\mathcal{C}	30	100	55000	2000
\mathcal{G}	85%	66.6%	52.1%	78.9%

Table: Best convergence cost from all baselines C_B , Worst convergence cost for iMOCA C, and cost reduction factor G.

Software and code

- github.com/HIPS/Spearmint/tree/PESM
- github.com/belakaria/MESMO
- github.com/belakaria/USeMO
- botorch.org/tutorials/multi_objective_bo
- github.com/yunshengtian/DGEMO
- github.com/belakaria/MESMOC
- github.com/belakaria/MF-OSEMO
- github.com/belakaria/iMOCA

Questions ?