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Drug/Vaccine Design

Accelerate the discovery of promising designs 

Credit: 

MIMA healthcare
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Nanoporous Materials Design

Sustainability applications
Storing gases (e.g., hydrogen powered cars)
Separating gases (e.g., carbon dioxide from flue gas of 

coalfired power plants)
Detecting gases (e.g., detecting pollutants in outdoor air)
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Sustainable Hardware Design for Data Centers 

America’s Data Centers Are Wasting Huge 
Amounts of Energy

By 2020, data centers are projected to consume roughly 140 
billion kilowatt-hours annually, costing American businesses 
$13 billion annually in electricity bills and emitting nearly 150 
million metric tons of carbon pollution

Report from Natural Resources Defense Council:. 
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

High-performance and Energy-
efficient manycore chips
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Auto ML and Hyperparameter Tuning

Accuracy of models critically depends on hyper-parameters
Optimization algorithm, learning rates, momentum, batch 

normalization, batch sizes, dropout rates, weight decay, data 
augmentation, …
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A/B Testing to Configure Websites
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Making Delicious Cookies
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Making AlphaGo Better
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Neuroscience and Brain Analytics

Credit: https://www.nature.com/articles/s41467-018-03657-3
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Common Attributes of the Search Problem

Search Space: Many candidate choices (inputs)

Objective function: Need to perform an expensive 
experiment to evaluate the objective value of any input

Optimization problem: find the candidate input with 
highest objective function value
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Common Attributes of the Search Problem

Search Space: Many candidate choices (inputs)

Objective function: Need to perform an expensive 
experiment to evaluate the objective value of any input

Optimization problem: find the candidate input with 
highest objective function value

Cannot afford  
exhaustive search
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Common Attributes of the Search Problem

Search Space: Many candidate choices (inputs)

Objective function: Need to perform an expensive 
experiment to evaluate the objective value of any input

Optimization problem: find the candidate input with 
highest objective function value

Trial and Error?
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Common Attributes of the Search Problem

Search Space: Many candidate choices (inputs)

Objective function: Need to perform an expensive 
experiment to evaluate the objective value of any input

Optimization problem: find the candidate input with 
highest objective function value

Can we do better than 
trial-and-error?
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Accelerate Search via Bayesian Optimization

Efficiently optimize expensive black-box functions

𝑥𝑥∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝑋𝑋

𝑓𝑓(𝑥𝑥)

• Black-box queries (aka experiments) are expensive

𝑥𝑥 𝑓𝑓(𝑥𝑥)

input Function evaluation
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Bayesian Optimization: Key Idea

Build a surrogate statistical model and use it to 
intelligently search the space
Replace expensive queries with cheaper queries
Use uncertainty of the model to select expensive queries

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛)

Expensive function evaluation
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛)

Expensive function evaluation
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BO Dimensions: Input Space

Continuous space
All variables of input 𝑥𝑥 are continuous

Discrete / Combinatorial space
Sequences, trees, graphs, sets, permutations etc.

Hybrid space
𝑥𝑥 = mixture of 𝑥𝑥𝑑𝑑 (discrete) and 𝑥𝑥𝑐𝑐 (continuous) variables
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BO Dimensions: Input Space

Continuous space
All variables of input 𝑥𝑥 are continuous

Discrete / Combinatorial space
Sequences, trees, graphs, sets, permutations etc.

Hybrid space
𝑥𝑥 = mixture of 𝑥𝑥𝑑𝑑 (discrete) and 𝑥𝑥𝑐𝑐 (continuous) variables

Most of the focus of 
existing BO work
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BO Dimensions: No. of Objectives

Single objective
For example, finding hyperparameters to optimize accuracy

Multiple objectives



20

BO Dimensions: No. of Objectives

Single objective
For example, finding hyperparameters to optimize accuracy

Multiple objectives

Most of the focus of 
existing BO work
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BO Dimensions: No. of Fidelities

Single-fidelity setting
Most expensive and accurate function evaluation

Multi-fidelity setting
Function evaluations with varying trade-offs in cost and accuracy
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BO Dimensions: No. of Fidelities

Single-fidelity setting
Most expensive and accurate function evaluation

Multi-fidelity setting
Function evaluations with varying trade-offs in cost and accuracy

Most of the focus of 
existing BO work
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BO Dimensions: Constraints

Unconstrained setting
 all inputs are valid

Constrained setting

Drugs/Vaccines 
that are safe
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BO Dimensions: Constraints

Unconstrained setting
 all inputs are valid

Constrained setting

Drugs/Vaccines 
that are safe

Most of the focus of 
existing BO work
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Outline of the Tutorial

Background on GPs and Single-Objective BO

Bayesian Optimization over Combinatorial Spaces

Bayesian Optimization over Hybrid Spaces

Break

Multi-Fidelity Bayesian Optimization

Constrained Bayesian Optimization

Multi-Objective Bayesian Optimization

Summary and Outstanding Challenges in BO
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Background on Gaussian Processes
and

Single-Objective Bayesian Optimization 
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Bayesian Optimization: Key Idea

Build a surrogate statistical model and use it to 
intelligently search the space
Replace expensive queries with cheaper queries
Use uncertainty of the model to select expensive queries

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Bayesian Optimization: Illustration

Credit: Ryan Adams 
https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf
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Bayesian Optimization: Illustration
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Bayesian Optimization: Illustration
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Bayesian Optimization: Illustration
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Bayesian Optimization: Illustration
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Bayesian Optimization: Illustration
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Bayesian Optimization: Illustration
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Bayesian Optimization: Illustration
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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BO needs a Probabilistic Model

To make predictions on unknown input

To quantify the uncertainty in predictions

One popular class of such models are Gaussian 
Processes (also called GPs)
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Gaussian Processes: What and Why?

Non-parametric, Bayesian and Kernel driven model

Flexibility
Principled 

uncertainty 
estimation

Specification of 
prior beliefs about 

rich function 
classes
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Gaussian Process

Stochastic process definition
Given any set of input points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 , the output 

values follows a multi-variate Gaussian distribution

The covariance matrix Σ is given by a kernel function 
𝑘𝑘 𝑥𝑥, 𝑥𝑥′ , i.e., Σ𝑖𝑖𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖
Kernel captures the similarity between 𝑥𝑥 and 𝑥𝑥𝑥[1]

GPs are fully characterized by the kernel function[2]

Footnotes

1. For people aware of SVMs, it is the same kernel function.

2. Technically, there is also the mean function, but it is not as interesting for most 
applications.  

[𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2),𝑓𝑓(𝑥𝑥3), … ,𝑓𝑓(𝑥𝑥𝑚𝑚)] ~ 𝒩𝒩(0, Σ)
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Gaussian Process: Inference

 Inference: Given training data {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), … (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚)}, 
the prediction for an unseen point 𝑥𝑥∗

Prediction(𝑥𝑥∗) ~ 𝒩𝒩(𝑦𝑦∗,𝜎𝜎∗)

𝑦𝑦∗ = 𝒌𝒌∗ 𝑲𝑲−𝟏𝟏 𝒀𝒀

𝜎𝜎∗ = 𝑘𝑘 𝑥𝑥∗, 𝑥𝑥∗ − 𝒌𝒌∗ 𝑲𝑲−𝟏𝟏𝒌𝒌∗

𝒌𝒌∗ = [𝑘𝑘 𝑥𝑥∗, 𝑥𝑥1 ,𝑘𝑘 𝑥𝑥∗, 𝑥𝑥2 , … , 𝑘𝑘 𝑥𝑥∗, 𝑥𝑥𝑚𝑚 ]

𝑲𝑲𝒊𝒊𝒊𝒊 = 𝑘𝑘 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖
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Gaussian Process: Training

Training procedure: searching for (kernel) hyper-
parameters by optimizing the marginal log-likelihood

Choice of kernel 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ is critical for good performance
Allows to incorporate domain knowledge (e.g., Morgan 

fingerprints in chemistry)
Matern kernel is a popular choice for continuous spaces 

log 𝑝𝑝 𝑦𝑦 = −
1
2
𝒀𝒀𝑻𝑻𝑲𝑲−𝟏𝟏𝒀𝒀 −

1
2

log det 𝑲𝑲 −
𝑛𝑛
2

log 2𝜋𝜋
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Gaussian Process: Two Views

Function space view: distribution over functions 
Function class is characterized by kernel

Weight space view: Bayesian linear regression in 
kernel’s feature space

𝑓𝑓 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝜏𝜏 𝑥𝑥 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = < 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑥𝑥′ >

Prior Posterior
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Gaussian Processes: Challenges and Solutions

Scalability: naive time complexity O(n3)

Solution: Sparse Gaussian processes 

Non-Gaussian likelihoods
 No closed form expression, e.g., classification setting
 Solution: Approximate inference 

log 𝑝𝑝 𝑦𝑦 = −
1
2
𝒀𝒀𝑻𝑻𝑲𝑲−𝟏𝟏𝒀𝒀 −

1
2

log det 𝑲𝑲 −
𝑛𝑛
2

log 2𝜋𝜋
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Acquisition Function

 Intuition: captures utility of evaluating an input

Challenge: trade-off exploration and exploitation 
 Exploration: seek inputs with high variance
 Exploitation: seek inputs with high mean
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Acquisition Function: Illustration
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Acquisition Function: Examples

Upper Confidence Bound (UCB)
Selects input that maximizes upper confidence bound

𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝑦𝑦∗(𝑥𝑥) + 𝛽𝛽 𝜎𝜎∗(𝑥𝑥)

Expected Improvement (EI)
Selects input with highest expected improvement over the 

incumbent

Thompson Sampling (TS)
Selects optimizer of a function sampled from the surrogate 

model’s posterior

Knowledge Gradient 
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Information-Theoretic Acquisition Functions

Key principle: select inputs for evaluation which provide 
maximum information about the optimum 

Concretely, pick observations which quickly decrease the 
entropy of distribution over the optimum

Design choices of 𝛼𝛼 leads to different algorithms

𝐴𝐴𝐴𝐴 𝑥𝑥 = Expected decrease in entropy
𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐻𝐻 𝛼𝛼 𝐷𝐷) − 𝐸𝐸𝑦𝑦[𝐻𝐻 𝛼𝛼 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦}

= Information Gain(𝛼𝛼; 𝑦𝑦)
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Information-Theoretic Acquisition Functions

Design choices of 𝛼𝛼 leads to different algorithms

𝛼𝛼 as input location of optima 𝑥𝑥∗
Entropy Search (ES) / Predictive Entropy Search (PES)
 Intuitive but requires expensive approximations

𝛼𝛼 as output value of optima 𝑦𝑦∗
Max-value Entropy Search (MES) and it’s variants
Computationally cheaper and more robust

𝐴𝐴𝐴𝐴 𝑥𝑥 = Expected decrease in entropy
𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐻𝐻 𝛼𝛼 𝐷𝐷) − 𝐸𝐸𝑦𝑦[𝐻𝐻 𝛼𝛼 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦}

= Information Gain(𝛼𝛼; 𝑦𝑦)
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Non-Myopic / Lookahead Acquisition Functions

Myopic acquisition functions (e.g., EI) reason about 
immediate utility

Non-myopic variants consider BO as a MDP and reason 
about longer decision horizons

D x

D1

…
…

D’’1

D’’’1

D’2
…

D’’2

D’’’2

…

…
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Non-Myopic / Lookahead Acquisition Functions

Non-myopic variants consider BO as MDP and reason 
about longer decision horizons

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛′

𝑢𝑢𝑛𝑛−1 𝑥𝑥′ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]

Bellman 
Recursion
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Non-Myopic / Lookahead Acquisition Functions

Non-myopic variants consider BO as MDP and reason 
about longer decision horizons

Challenge: curse of dimensionality

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛′

𝑢𝑢𝑛𝑛−1 𝑥𝑥′ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛1

{𝑢𝑢 𝑥𝑥1 𝐷𝐷1 + 𝐸𝐸𝑦𝑦1[max
𝑛𝑛2

{𝑢𝑢 𝑥𝑥2 𝐷𝐷2) … . }]}]
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Non-Myopic / Lookahead Acquisition Functions

Non-myopic variants consider BO as MDP and reason 
about longer decision horizons

Challenge: curse of dimensionality

Some solutions
Multi-step lookahead policies with approximations 
Rollout based approximate dynamic programming

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛′

𝑢𝑢𝑛𝑛−1 𝑥𝑥′ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]

𝑢𝑢𝑘𝑘 𝑥𝑥 𝐷𝐷 = 𝑢𝑢1 𝑥𝑥 𝐷𝐷 + 𝐸𝐸𝑦𝑦 [max
𝑛𝑛1

{𝑢𝑢 𝑥𝑥1 𝐷𝐷1 + 𝐸𝐸𝑦𝑦1[max
𝑛𝑛2

{𝑢𝑢 𝑥𝑥2 𝐷𝐷2) … . }]}]
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Bayesian Optimization: Three Key Elements

 Statistical model (e.g., Gaussian process)

 Acquisition function (e.g., Expected improvement)

 Acquisition function optimizer (e.g., local search)

Statistical model M Acquisition function 
optimization

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Acquisition Function Optimizer

Challenge: non-convex/multi-modal optimization problem

Commonly used approaches

Space partitioning methods (e.g., DIRECT, LOGO)

Gradient based methods (e.g., Gradient descent)

Evolutionary search (e.g., CMA-ES)
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BO Software: BoTorch

Scalability via automatic differentiation
PyTorch/GpyTorch

Monte-Carlo acquisition functions
Express acquisition functions as expectations of utility 

functions
Compute expectations via Monte-Carlo sampling 
Use the reparameterization trick to make acquisition functions 

differentiable

Other software: Trieste (based on TensorFlow)

Not actively maintained: GPyOpt, Spearmint
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Questions ?



1

Bayesian Optimization 
over Combinatorial Spaces
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Application #1: Drug/Vaccine Design

Accelerate the discovery of promising designs 

Credit: 

MIMA healthcare
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Application #2: Nanoporous Materials Design

Sustainability applications
Storing gases (e.g., hydrogen powered cars)
Separating gases (e.g., carbon dioxide from flue gas of 

coalfired power plants)
Detecting gases (e.g., detecting pollutants in outdoor air)
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Combinatorial BO: The Problem

Goal: find optimized combinatorial structures

Many other science and engineering applications

Drug design Hardware design
Material design
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Combinatorial BO: The Problem

Given: a combinatorial space of structures 𝑋𝑋 (e.g., 
sequences, graphs) and an expensive black-box 
function 𝑓𝑓(𝑥𝑥 ∈ 𝑋𝑋) to evaluate each structure 𝑥𝑥 ∈ 𝑋𝑋

Find: optimized combinatorial structure 𝑥𝑥∗

Evaluation: number of function evaluations to 
(approximately) optimize 𝑓𝑓(𝑥𝑥)

𝑥𝑥∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝑋𝑋

𝑓𝑓(𝑥𝑥)
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Combinatorial BO: Challenges

Goal: find optimized combinatorial structures

Challenges
Evaluating each candidate design is expensive
Large combinatorial space of designs (e.g., sequences, graphs)

Drug design Hardware design
Material design
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Combinatorial BO: Technical Challenges

 Effective modeling over combinatorial structures (e.g., sequences, graphs)

 Solving hard combinatorial optimization problem to select next structure

Statistical model M Acquisition function 
optimization (AFO)

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛)

Expensive function evaluation
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Definition of Combinatorial Space

Space of binary structures 𝑋𝑋 = 0,1 𝑛𝑛

Each structure 𝑥𝑥 ∈ 𝑋𝑋 be represented using 𝑛𝑛 binary variables 
𝑥𝑥1, 𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛

Categorical variables
𝑥𝑥𝑖𝑖 can take more than two candidate values

How to deal with categorical variables?
Option 1: Encode them as binary variables (a common practice)
Option 2: Modeling and reasoning over categorical variables
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Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
BOCS [Baptista et al., 2018]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]

Complex statistical models and tractable/accurate AFO
L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021] 

Reduction to continuous BO [Gómez-Bombarelli et al., 2018]…



10

Aside: Combinatorial BO vs. Structured Prediction

Structured prediction (SP) [Lafferty et al., 2001] [Bakir et al., 2007]

Generalization of classification to structured outputs (e.g., 
sequences, trees, and graphs)
 POS tagging, parsing, information extraction, image segmentation

CRFs, Structured Perceptron, Structured SVM

Complexity of cost function vs. tractability of inference
Simple cost functions (e.g., first-order) and tractable inference
Complex cost functions (e.g., higher-order) and heuristic inference
Learning to search for SP [Daume’ et al., 2009] [Doppa et al., 2014] 

Key Difference: Small data vs. big data setting
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Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
BOCS [Baptista et al., 2018]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]

Complex statistical models and tractable/accurate AFO
L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021] 

Reduction to continuous BO [Gómez-Bombarelli et al., 2018]…
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BOCS Algorithm [Baptista et al., 2018]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of up to Quadratic (second-order) terms
𝜙𝜙 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑 , 𝑥𝑥1. 𝑥𝑥2, 𝑥𝑥1. 𝑥𝑥3, … , 𝑥𝑥𝑑𝑑−1. 𝑥𝑥𝑑𝑑]

Thompson sampling as acquisition function

Acquisition function optimization
Binary quadratic program

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑑𝑑

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥
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BOCS Algorithm [Baptista et al., 2018]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of up to Quadratic (second-order) terms
𝜙𝜙 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑 , 𝑥𝑥1. 𝑥𝑥2, 𝑥𝑥1. 𝑥𝑥3, … , 𝑥𝑥𝑑𝑑−1. 𝑥𝑥𝑑𝑑]

Thompson sampling as acquisition function

Acquisition function optimization
Binary quadratic program

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑑𝑑

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥

May not be sufficient 
to capture desired 

dependencies
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BOCS Algorithm [Baptista et al., 2018]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of up to Quadratic (second-order) terms
𝜙𝜙 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑 , 𝑥𝑥1. 𝑥𝑥2, 𝑥𝑥1. 𝑥𝑥3, … , 𝑥𝑥𝑑𝑑−1. 𝑥𝑥𝑑𝑑]

Thompson sampling as acquisition function

Acquisition function optimization
Binary quadratic program

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑑𝑑

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥

Cannot handle 
declarative constraints 

for valid structures
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Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
BOCS [Baptista et al., 2018]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]

Complex statistical models and tractable/accurate AFO
L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021] 

Reduction to continuous BO [Gómez-Bombarelli et al., 2018]…
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Uncertainty estimates 
can be poor
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Can potentially get 
stuck in local optima
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COMBO Algorithm [Oh et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space 𝑋𝑋

𝐾𝐾 𝑉𝑉,𝑉𝑉 = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Expected improvement as acquisition function

Local search with random restarts for AFO
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COMBO Algorithm [Oh et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space 𝑋𝑋

𝐾𝐾 𝑉𝑉,𝑉𝑉 = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Combinatorial graph representation [Oh et al., 2019]

𝐺𝐺

Each vertex is a 
candidate structure 

𝑥𝑥 ∈ 𝑋𝑋
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COMBO Algorithm [Oh et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space 𝑋𝑋

𝐾𝐾 𝑉𝑉,𝑉𝑉 = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Combinatorial graph representation [Oh et al., 2019]

Graph Cartesian product of subgraphs

𝐺𝐺
⊡ ⊡𝐺𝐺1 𝐺𝐺2 𝐺𝐺3
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COMBO Algorithm [Oh et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space 𝑋𝑋

𝐾𝐾 𝑉𝑉,𝑉𝑉 = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Expected improvement as acquisition function

Local search with random restarts for AFO

Cannot use SOTA acquisition 
functions if we cannot sample 
functions from GP posterior
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COMBO Algorithm [Oh et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

Requires a graph representation of the input space 𝑋𝑋

𝐾𝐾 𝑉𝑉,𝑉𝑉 = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Expected improvement as acquisition function

Local search with random restarts for AFO

Can potentially get 
stuck in local optima
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Combinatorial BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
BOCS [Baptista et al., 2018]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]

Complex statistical models and tractable/accurate AFO
L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021] 

Reduction to continuous BO [Gómez-Bombarelli et al., 2018]…
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MerCBO Algorithm [Deshwal et al., 2021]

Same surrogate model as COMBO
GP with discrete diffusion kernel and graph representation

Thompson sampling as acquisition function
Mercer features allow sampling functions from GP posterior

Acquisition function optimization
Binary quadratic program
Parametrized submodular relaxation (PSR) solver

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑑𝑑

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥
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MerCBO Algorithm [Deshwal et al., 2021]

Same surrogate model as COMBO
GP with discrete diffusion kernel and graph representation

Thompson sampling as acquisition function
Mercer features allow sampling functions from GP posterior

Acquisition function optimization
Binary quadratic program
Parametrized submodular relaxation (PSR) solver

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑑𝑑

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥
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MerCBO: Acquisition Function

Mercer features allow sampling functions from GP posterior

Missing puzzle to leverage prior acquisition functions
Thompson Sampling (TS)
Predictive Entropy Search (PES)
Max-value Entropy Search (MES)
…

BO for continuous 
spaces

BO for discrete 
spaces
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MerCBO: Mercer Features

Key Idea: exploit the structure of combinatorial graph 𝐺𝐺 to 
compute its eigenspace in closed-form
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MerCBO: Mercer Features

Key Idea: exploit the structure of combinatorial graph 𝐺𝐺 to 
compute its eigenspace in closed-form

 Graph Laplacian 𝛽𝛽 𝐺𝐺 decomposes over those of sub-graphs

𝛽𝛽 𝐺𝐺 = 𝛽𝛽 𝐺𝐺1 ⨁ 𝛽𝛽 𝐺𝐺2 ⨁ 𝛽𝛽 𝐺𝐺3
⨁ is Kronecker sum operator
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MerCBO: Mercer Features

Key Idea: exploit the structure of combinatorial graph 𝐺𝐺 to 
compute its eigenspace in closed-form

 Graph Laplacian 𝛽𝛽 𝐺𝐺 decomposes over those of sub-graphs

 [Hammack et al., 2011] Given two graphs 𝐺𝐺1 and 𝐺𝐺2 with the eigenspace 
of their Laplacians being  {𝜆𝜆1,𝑈𝑈1} and {𝜆𝜆2,𝑈𝑈2} respectively, the 
eigenspace of 𝛽𝛽(𝐺𝐺1 ⊡ 𝐺𝐺2) is given by {𝜆𝜆1⋈ 𝜆𝜆2,𝑈𝑈1⨂ 𝑈𝑈2}.

𝛽𝛽 𝐺𝐺 = 𝛽𝛽 𝐺𝐺1 ⨁ 𝛽𝛽 𝐺𝐺2 ⨁ 𝛽𝛽 𝐺𝐺3 ⨁ is Kronecker sum operator
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MerCBO: Mercer Features

Key Idea: exploit the structure of combinatorial graph 𝐺𝐺 to 
compute its eigenspace in closed-form

 Graph Laplacian 𝛽𝛽 𝐺𝐺 decomposes over those of sub-graphs

 [Hammack et al., 2011] Given two graphs 𝐺𝐺1 and 𝐺𝐺2 with the eigenspace 
of their Laplacians being  {𝜆𝜆1,𝑈𝑈1} and {𝜆𝜆2,𝑈𝑈2} respectively, the 
eigenspace of 𝛽𝛽(𝐺𝐺1 ⊡ 𝐺𝐺2) is given by {𝜆𝜆1⋈ 𝜆𝜆2,𝑈𝑈1⨂ 𝑈𝑈2}.

 Each 𝐺𝐺𝑖𝑖 has eigenvalue {0,2} and eigenvectors {[1, 1], [1, -1]}

𝛽𝛽 𝐺𝐺 = 𝛽𝛽 𝐺𝐺1 ⨁ 𝛽𝛽 𝐺𝐺2 ⨁ 𝛽𝛽 𝐺𝐺3 ⨁ is Kronecker sum operator
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MerCBO: Mercer Features

Key Idea: exploit the structure of combinatorial graph 𝐺𝐺 to 
compute its eigenspace in closed-form

Eigenvalue set: {0, 2, … ,2𝑛𝑛}
𝑗𝑗𝑛𝑛𝑡 eigenvalue occurs with 𝑛𝑛

𝑗𝑗 multiplicity

Eigenvector set: Hadamard matrix (𝐻𝐻) of order 2𝑛𝑛

𝐻𝐻𝑖𝑖𝑗𝑗 = (−1) 𝑟𝑟𝑖𝑖,𝑟𝑟𝑗𝑗
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MerCBO: Mercer Features

𝑲𝑲 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = �
𝒊𝒊=𝟎𝟎

𝟐𝟐𝒏𝒏−𝟏𝟏

𝒆𝒆−𝜷𝜷𝝀𝝀𝒊𝒊𝒖𝒖𝒊𝒊( 𝒙𝒙𝟏𝟏 ) 𝐮𝐮𝐣𝐣 𝐱𝐱𝟐𝟐

𝑲𝑲 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = �
𝒊𝒊=𝟎𝟎

𝟐𝟐𝒏𝒏−𝟏𝟏

𝒆𝒆−𝜷𝜷𝝀𝝀𝒊𝒊 −𝟏𝟏<𝒓𝒓𝒊𝒊, 𝒙𝒙𝟏𝟏> −𝟏𝟏<𝒓𝒓𝒊𝒊, 𝒙𝒙𝟐𝟐>

𝑲𝑲 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 𝝓𝝓 𝒙𝒙𝟏𝟏 𝑻𝑻𝝓𝝓(𝒙𝒙𝟐𝟐)

𝜙𝜙 𝑥𝑥 𝑖𝑖 = { 𝒆𝒆−𝜷𝜷𝝀𝝀𝒊𝒊 −𝟏𝟏<𝒓𝒓𝒊𝒊, 𝒙𝒙>}
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MerCBO: Mercer Features

𝑲𝑲 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = �
𝒊𝒊=𝟎𝟎

𝟐𝟐𝒏𝒏−𝟏𝟏

𝒆𝒆−𝜷𝜷𝝀𝝀𝒊𝒊 −𝟏𝟏<𝒓𝒓𝒊𝒊, 𝒙𝒙𝟏𝟏> −𝟏𝟏<𝒓𝒓𝒊𝒊, 𝒙𝒙𝟐𝟐>

𝑲𝑲 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 𝝓𝝓 𝒙𝒙𝟏𝟏 𝑻𝑻𝝓𝝓(𝒙𝒙𝟐𝟐)

𝑗𝑗𝑛𝑛𝑡 order Mercer features: first 𝑗𝑗 distinct eigenvalues 

𝜙𝜙 𝑥𝑥 𝑖𝑖 = { 𝒆𝒆−𝜷𝜷𝝀𝝀𝒊𝒊 −𝟏𝟏<𝒓𝒓𝒊𝒊, 𝒙𝒙>}
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MerCBO Algorithm [Deshwal et al., 2021]

Same surrogate model as COMBO
GP with discrete diffusion kernel and graph representation

Thompson sampling as acquisition function
Mercer features allow sampling functions from GP posterior

Acquisition function optimization
Binary quadratic program
Parametrized submodular relaxation (PSR) solver

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑑𝑑

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥
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MerCBO: Acquisition Function Optimization

Parametrized Submodular Relaxation (PSR) solver
 Construct a Λ-parametrized submodular relaxation 

Optimize the relaxation over Λ

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑥𝑥∈{0,1}𝑛𝑛

𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥

≤

Solve using min. 
graph cut algorithms

ℎΛ1 𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴−𝑥𝑥 𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 + 𝑏𝑏𝑇𝑇𝑥𝑥ℎΛ2 𝑥𝑥 + 𝑥𝑥𝑇𝑇𝐴𝐴−𝑥𝑥≤ ≤ … .

Inspired by work on prescriptive price optimization [Ito and Fujimaki, 2016]
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MerCBO Results #1: Order of Features

Second-order features provide the best trade-off
Tractability and good overall BO performance
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MerCBO Results #1: Order of Features

Second-order features provide the best trade-off
Tractability and good overall BO performance
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MerCBO Results #2: Comparison with State-of-the-art

MerCBO outperforms prior methods
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MerCBO Results #2: Comparison with State-of-the-art

MerCBO outperforms prior methods
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MerCBO for Biological Sequence Design

Design of optimized biological structures such as DNA 
and proteins have many medical applications



41

Biological Sequence Design: Three Desiderata

Diversity
uncover a diverse set of structures

Parallel experiments
Select a batch of structures for evaluation in each round

Real-time accelerated design
Use parallel experimental resources to accelerate optimization 
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MerCBO Results #3: Real-time acceleration 

TS is better than EI for real-time accelerated design
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MerCBO Results #3: Real-time acceleration 

TS improvement over EI increases with batch size
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MerCBO Results #4: Diversity of sequences

TS is better than EI for diversity of sequences
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MerCBO Results #4: Diversity of sequences

TS improvement over EI increases with batch size
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Learning to Search Framework [Deshwal et al., 2021]

Use machine learning to improve the accuracy of search
Continuously update the search control knowledge using the 

training data generated from the previous search experience
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Learning to Search Framework [Deshwal et al., 2021]

Defines a new family of search-style BO approaches

Can work with any complex statistical model and 
acquisition function

Can handle complex domain constraints to select 
``valid’’ structures for evaluation 
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Reduction to Continuous BO [Gómez-Bombarelli et al., 2018]…

Key Idea: Convert discrete space into continuous space

Train a deep generative model (VAE) using unsupervised 
structures

Perform BO in the learned continuous latent space
Surrogate modeling and acquisition function optimization in 

latent space (vs. combinatorial space)
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Reduction to Continuous BO [Gómez-Bombarelli et al., 2018]…

BO in the learned latent space
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Reduction to Continuous BO [Gómez-Bombarelli et al., 2018]…

BO in the learned latent space

Decoded structure 
may not be valid
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Reduction to Continuous BO [Gómez-Bombarelli et al., 2018]…

BO in the learned latent space

Some recent work to address this challenge
 Griffiths R.-R. and Hernández-Lobato J. M.: Constrained Bayesian optimization for 

Automatic Chemical Design Using Variational Autoencoders, Chemical Science, 2019

Decoded structure 
may not be valid
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Reduction to Continuous BO [Gómez-Bombarelli et al., 2018]…

BO in the learned latent space

Challenges
o Doesn’t (explicitly) incorporate information about decoded structures
o Surrogate model may not generalize well for small data setting
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Improve Latent Space 
via Weighted Retraining [Tripp et al., 2020]

Periodically retrain the deep generative model 

Assign importance weights to training data proportional 
to their objective function value
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Improve Latent Space 
via Weighted Retraining [Tripp et al., 2020]

Periodically retrain the deep generative model 

Assign importance weights to training data proportional 
to their objective function value

Computationally 
expensive
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Improve Latent Space 
via Weighted Retraining [Tripp et al., 2020]

Periodically retrain the deep generative model 

Assign importance weights to training data proportional 
to their objective function value

Overall approach is not 
effective for small-data setting
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Uncertainty-guided Latent Space BO [Notin et al., 2021]

Leverage the epistemic uncertainty of the decoder to 
guide the optimization process

 Importance sampling-based estimator for uncertainty 
quantification over high-dimensional discrete structures

No retraining of deep generative model is needed
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LADDER Algorithm [Deshwal and Doppa, 2021]
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LADDER Algorithm [Deshwal and Doppa, 2021]

 Key Idea: Combines the complementary strengths of deep generative 
models and structured kernels for better surrogate modeling
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Structure-Coupled Kernel

• Structure-coupled kernel (𝑐𝑐) combines
oContinuous kernels over latent space 𝒵𝒵 (e.g., Matern)
o Structured kernels (e.g., generic/hand-designed strings, graphs)

• Key Idea
o Extrapolate eigenfunctions of the latent space kernel matrix L with 

basis functions from the structured kernel 𝑘𝑘

𝑐𝑐 𝑧𝑧, 𝑧𝑧′ = 𝑘𝑘𝑧𝑧𝑇𝑇𝐾𝐾−1𝛽𝛽𝐾𝐾−1𝑘𝑘𝑧𝑧′
• Generalized Nystrom Extension [Ref]

• 𝑘𝑘 acts like a smooth extrapolating kernel



Latent Space BO Results #1

• LADDER outperforms latent space BO real benchmarks

Arithmetic expression task Chemical design task



Latent Space BO Results #2

• LADDER is competitive or better than state-of-the-art methods

Arithmetic expression task Chemical design task
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Code and Software

MerCBO: https://github.com/aryandeshwal/MerCBO

LADDER: https://github.com/aryandeshwal/LADDER

BOPS: https://github.com/aryandeshwal/BOPS

COMBO: https://github.com/QUVA-Lab/COMBO

SMAC: https://github.com/automl/SMAC3

https://github.com/aryandeshwal/MerCBO
https://github.com/aryandeshwal/LADDER
https://github.com/aryandeshwal/BOPS
https://github.com/QUVA-Lab/COMBO
https://github.com/automl/SMAC3
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Questions ?



1

Bayesian Optimization 
over Hybrid Spaces



2

BO Over Hybrid Spaces: The Problem

Goal: find optimized hybrid structures via expensive 
experiments
 𝑥𝑥 = mixture of 𝑥𝑥𝑑𝑑 (discrete) and 𝑥𝑥𝑐𝑐 (continuous) variables 

Many other science, engineering, industrial applications
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Hybrid BO: Technical Challenges

 Effective modeling over hybrid structures (capture complex interactions 
among discrete and continuous variables)

 Solving hard optimization problem over hybrid spaces to select next 
structure

Statistical model M Acquisition function 
optimization (AFO)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑛𝑛∈𝑋𝑋

𝐴𝐴𝐴𝐴(𝑀𝑀, 𝑥𝑥)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Expensive function evaluation
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Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
MiVaBO [Daxberger et al., 2019]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al., 

2021]

Complex statistical models and tractable/accurate AFO
Reduction to continuous BO: GEBO [Ahn et al.,, 2022]
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Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
MiVaBO [Daxberger et al., 2019]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al., 

2021]

Complex statistical models and tractable/accurate AFO
Reduction to continuous BO: GEBO [Ahn et al.,, 2022]
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MiVaBO [Daxberger et al., 2019]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of continuous (random Fourier features), 

discrete (BOCS representation for binary variables), and mixed 
(products of all pairwise combinations) features

Thompson sampling as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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MiVaBO [Daxberger et al., 2019]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of continuous (random Fourier features), 

discrete (BOCS representation for binary variables), and mixed 
(products of all pairwise combinations) features

Thompson sampling as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)

May not be sufficient to capture 
desired dependencies
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MiVaBO [Daxberger et al., 2019]

Linear surrogate model over binary structures
𝑓𝑓 𝑥𝑥 ∈ 𝑋𝑋 = 𝜃𝜃𝑇𝑇 .𝜙𝜙(𝑥𝑥)
𝜙𝜙(𝑥𝑥) consists of continuous (random Fourier features), 

discrete (BOCS representation for binary variables), and mixed 
(products of all pairwise combinations) features

Thompson sampling as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)

Can potentially get 
stuck in local optima
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Hybrid BO: Summary of Approaches

Trade-off complexity of model and tractability of AFO

Simple statistical models and tractable search for AFO
MiVaBO [Daxberger et al., 2019]

Complex statistical models and heuristic search for AFO
SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al., 

2021]

Complex statistical models and tractable/accurate AFO
Reduction to continuous BO: GEBO [Ahn et al.,, 2022]
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical/continuous variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Uncertainty estimates 
can be poor
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SMAC Algorithm [Hutter et al., 2010, 2011]

Random forest as surrogate model
works naturally for categorical variables
Prediction/Uncertainty (= empirical mean/variance over trees)

Expected improvement as acquisition function

Hand-designed local search with restarts for AFO

Can potentially get 
stuck in local optima
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HyBO Algorithm [Deshwal et al., 2021]

GP surrogate model with additive diffusion kernels

Expected improvement as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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HyBO Algorithm [Deshwal et al., 2021]

GP surrogate model with additive diffusion kernels

Exploits the general recipe of additive kernels [Duvenaud et al., 2011]

 Instantiation w/ discrete & continuous diffusion kernels
Bayesian treatment of the hyper-parameters
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HyBO Algorithm [Deshwal et al., 2021]

GP surrogate model with additive diffusion kernels

Expected improvement as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)

Can potentially get 
stuck in local optima
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Hybrid BO: Experimental Results #1

 HyBO performs significantly better than prior methods
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Hybrid BO: Experimental Results #2

 HyBO’s better BO performance is due to better surrogate model
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BO-FM Algorithm [Oh et al., 2021]

GP surrogate model with frequency modulation kernels

Expected improvement as acquisition function

Alternating search for acquisition function optimization
Step 1: Search over continuous sub-space 
Step 2: Search over discrete sub-space using output of Step #1 
Repeat (if needed)
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BO-FM Algorithm [Oh et al., 2021]

GP surrogate model with frequency modulation kernels

Key idea: Generalize the COMBO kernel [Oh et al., 2019] by 
parametrizing via a function of continuous variables

Requirement on 𝑓𝑓 for K to be a positive definite kernel
𝑓𝑓 should be positive definite w.r.t 𝑋𝑋𝑐𝑐 ,𝑋𝑋𝑐𝑐𝑐

K = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛽𝛽𝛽𝛽 𝐺𝐺 )

Remember the 
COMBO kernelK = 𝑈𝑈𝑇𝑇𝑒𝑒𝑥𝑥𝑒𝑒 −𝛽𝛽Σ 𝑈𝑈

K = 𝑈𝑈𝑇𝑇𝑓𝑓(Σ,𝑋𝑋𝑐𝑐 ,𝑋𝑋𝑐𝑐𝑐)𝑈𝑈
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Code and Software

HyBO:  https://github.com/aryandeshwal/HyBO

SMAC: https://github.com/automl/SMAC3

https://github.com/aryandeshwal/HyBO
https://github.com/automl/SMAC3
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Questions ?



1

Multi-Fidelity 
Bayesian Optimization



2

Application #1: Auto ML and 
Hyperparameter Tuning

𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Cost vs. Accuracy trade-offs in 
evaluating hyperparameter 

configurations
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Application #2: Hardware Design via Simulations

𝑇𝑇𝑝𝑝𝑇𝑇𝑒𝑒𝑇𝑇𝑒𝑒𝑇𝑇𝑝𝑝𝑒𝑒 𝑇𝑇𝑝𝑝𝑇𝑇𝑒𝑒𝑇𝑇𝑒𝑒𝑇𝑇𝑝𝑝𝑒𝑒

Cost vs. Accuracy trade-offs in 
evaluating hardware designs
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Multi-Fidelity BO: The Problem

Cost vs. accuracy trade-offs for function approximations

Continuous-fidelity is the most general case
Discrete-fidelity is a special case

Goal: (approximately) optimize the highest-fidelity 
function by minimizing the resource cost of experiments

Discrete fidelity Continuous fidelity
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Multi-Fidelity BO: Key Challenges

 Intuition: use cheap (low-fidelity) experiments to gain 
information and prune the input space; and use costly 
(high-fidelity) experiments on promising candidates

Modeling challenge: How to model multi-fidelity 
functions to allow information sharing?

Reasoning challenge: How to select the input design and 
fidelity pair in each BO iteration?
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Multi-Fidelity GPs for Modeling
Desiderata: model relationship/information sharing 

between different fidelities

Solution: multi-output GPs with vector-valued kernels

Provides a prediction 𝜇𝜇 and uncertainty 𝜎𝜎 for each 
input and fidelity pair

𝑘𝑘 𝑥𝑥, 𝑧𝑧 , 𝑥𝑥′,𝑓𝑓 = 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ 𝑘𝑘𝐹𝐹(𝑧𝑧, 𝑓𝑓)
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EI Extension for Multi-Fidelity BO

Multi-fidelity expected improvement (MF-EI)
Extension of EI for multi-fidelity setting
Applicable for discrete-fidelity setting

Acquisition function optimization
 Enumerate each fidelity 𝑧𝑧 and find the best 𝑥𝑥 fixing 𝑧𝑧

𝐸𝐸𝐸𝐸 𝑥𝑥, 𝑧𝑧 = 𝐸𝐸 max 𝜏𝜏 − 𝑦𝑦𝑓𝑓 𝑝𝑝𝑝𝑝𝑐𝑐 𝑦𝑦𝑧𝑧,𝑦𝑦𝑓𝑓 𝐶𝐶𝑓𝑓/𝐶𝐶𝑧𝑧
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Information-Theoretic Extensions 
for Multi-Fidelity BO

𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐻𝐻 𝛼𝛼 𝐷𝐷) − 𝐸𝐸𝑦𝑦[𝐻𝐻 𝛼𝛼 𝐷𝐷 ∪ 𝑥𝑥,𝑦𝑦 )]
= Information Gain(𝛼𝛼; 𝑦𝑦)

Design choices of 𝛼𝛼 leads to different algorithms

𝛼𝛼 as input location of optima 𝑥𝑥∗
Entropy Search (ES) / Predictive Entropy Search (PES)
 Intuitive but requires expensive approximations

𝛼𝛼 as output value of optima 𝑦𝑦∗
Max-value Entropy Search (MES) and it’s variants
Computationally cheaper and more robust
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Information-Theoretic Extensions 
for Multi-Fidelity BO

𝐴𝐴𝐴𝐴 𝑥𝑥, 𝑧𝑧 = 𝐻𝐻 𝛼𝛼 𝐷𝐷) − 𝐸𝐸𝑦𝑦[𝐻𝐻 𝛼𝛼 𝐷𝐷 ∪ 𝑥𝑥, 𝑧𝑧,𝑦𝑦 )]
= Information Gain per Unit Cost(𝛼𝛼; 𝑦𝑦)

Design choices of 𝛼𝛼 leads to different algorithms

𝛼𝛼 as input location of optima 𝑥𝑥∗
MF-Predictive Entropy Search (MF-PES)
 Intuitive but requires expensive approximations

𝛼𝛼 as output value of optima 𝑦𝑦∗
MF Max-value Entropy Search (MF-MES) 
Computationally cheaper and more robust
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Continuous-Fidelity BO: BOCA Algorithm

Two step procedure to select input 𝑥𝑥 and fidelity 𝑧𝑧
separately

Selection of input 𝒙𝒙
Optimize UCB (𝑦𝑦𝑓𝑓(𝑥𝑥) + 𝛽𝛽 𝜎𝜎𝑓𝑓(𝑥𝑥)) of highest fidelity

Selection of fidelity 𝒛𝒛
Reducing fidelity space: 𝑍𝑍𝑡𝑡 = 𝑓𝑓 ∪ {𝑧𝑧:𝜎𝜎𝑧𝑧 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 ≥ 𝛾𝛾(𝑧𝑧)}
 If 𝑍𝑍𝑡𝑡 is not empty, select the cheapest fidelity from it
Otherwise, select the highest-fidelity
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Code and Software

Multi-fidelity modeling
 https://mlatcl.github.io/mlphysical/lectures/05-02-

multifidelity.html

BOTorch
https://botorch.org/tutorials/discrete_multi_fidelity_bo

https://mlatcl.github.io/mlphysical/lectures/05-02-multifidelity.html
https://botorch.org/tutorials/discrete_multi_fidelity_bo
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Questions ?



1

Bayesian Optimization
with 

Black-Box Constraints



2

Application #1: Drug/Vaccine Design

Accelerate the discovery of promising designs

Credit: 

MIMA healthcare

Drugs/Vaccines 
that are safe
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Application #2: Nanoporous Materials Design

Sustainability applications
Storing gases (e.g., hydrogen powered cars)
Separating gases (e.g., carbon dioxide from flue gas of 

coalfired power plants)
Detecting gases (e.g., detecting pollutants in outdoor air)

Materials that are 
synthesizable
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BO with Black-Box Constraints: The Problem

Goal: find the approximate optima from the constrained 
input space by minimizing the total cost of experiments

𝑐𝑐1 𝑥𝑥
…
𝑐𝑐𝐿𝐿 𝑥𝑥

Blackbox
Experiment𝑥𝑥

Objective and constraints
evaluation of design 𝑥𝑥

𝑓𝑓(𝑥𝑥)
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BO with Black-Box Constraints: Key Challenges

Modeling challenge: how to model black-box constraints?
 GP models will work

Reasoning challenge: How to select the input design 
guided by the learned models in each BO iteration?
 Especially, when no valid inputs (i.e., satisfies constraints) were 

found from past experiments
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Constrained Expected Improvement (c-EI)

Model each constraint with an independent GP

Suppose 𝑦𝑦∗𝑓𝑓 is the best function value from the valid 
inputs (i.e., satisfies constraints) from past experiments)
Assign zero improvement to all invalid inputs

When past experimental data does not contain 
valid inputs: 𝑦𝑦∗𝑓𝑓 is not defined 

𝐸𝐸𝐼𝐼𝑐𝑐 𝑥𝑥 = 𝐸𝐸𝐼𝐼 𝑥𝑥 Π𝑖𝑖=1𝑘𝑘 𝑃𝑃(�𝑐𝑐𝑖𝑖 𝑥𝑥 ≥ 0)

𝐸𝐸𝐼𝐼𝑐𝑐 𝑥𝑥 = Π𝑖𝑖=1𝑘𝑘 𝑃𝑃(�𝑐𝑐𝑖𝑖 𝑥𝑥 ≥ 0)
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Constrained Predictive Entropy Search (PESC)

Approximating conditioned predictive distribution 
First part has a closed-form solution
Second part approximated using expectation propagation 

𝛼𝛼 𝑥𝑥 = 𝐻𝐻(𝑥𝑥∗|𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻(𝑥𝑥∗|𝐷𝐷 ∪ (𝑥𝑥,𝑦𝑦))]

𝛼𝛼 𝑥𝑥 = log 𝜎𝜎𝑓𝑓2 𝑥𝑥 + ∑𝑘𝑘=1𝐾𝐾 log 𝜎𝜎𝑐𝑐𝑘𝑘
2 𝑥𝑥 −

1
𝑀𝑀

{ ∑𝑚𝑚=1
𝑀𝑀 log 𝜎𝜎𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶

2 𝑥𝑥|𝑥𝑥𝑚𝑚∗ +∑𝑘𝑘=1𝐾𝐾 log 𝜎𝜎𝑐𝑐𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶
2 𝑥𝑥|𝑥𝑥𝑚𝑚∗ }
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Constrained Max-value Entropy Search (CMES)

Truncated multivariate distribution approximation
Closed-from expression 
 Issue: can result in negative values 

Lower bound approximation
Closed-from expression and overcomes negative values issue
Maximizes the probability of selecting a valid input point when 

no feasible path is sampled 

𝛼𝛼 𝑥𝑥 = 𝐻𝐻(𝑦𝑦∗|𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻(𝑦𝑦∗|𝐷𝐷 ∪ (𝑥𝑥,𝑦𝑦))]
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Constrained Max-value Entropy Search: Results

Truncated multivariate distribution approximation
Closed-from expression 
 Issue: can result in negative values 

Gramacy Hartmann6
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Software and Code

PESC: github.com/HIPS/Spearmint/tree/PESC
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Questions ?



1

Multi-Objective 
Bayesian Optimization 



2

Application #1: Drug/Vaccine Design

Accelerate the discovery of promising designs 

Credit: MIMA healthcare

Effectiveness

Safety

Cost
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Application #2: Hardware Design for Datacenters

America’s Data Centers Are Wasting Huge 
Amounts of Energy

By 2020, data centers are projected to consume roughly 140 
billion kilowatt-hours annually, costing American businesses 
$13 billion annually in electricity bills and emitting nearly 150 
million metric tons of carbon pollution

Report from Natural Resources Defense Council:. 
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

High-performance and Energy-
efficient manycore chips

Performance

Reliability

Power
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Multi-Objective Optimization: The Problem 

Goal: Find designs with optimal trade-offs by minimizing 
the total resource cost of experiments
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Multi-Objective Optimization: Key Challenge 

Optimize multiple conflicting objective functions
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Multi-Objective Optimization: The Solution

Set of input designs with optimal trade-offs called the 
optimal Pareto set  𝜒𝜒∗

 Corresponding set of function values called optimal 
pareto front Pareto front  𝑌𝑌∗

 Pareto hypervolume 
measures the quality of 
a Pareto front
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Single => Multi-Objective BO

Challenge #1: Statistical modeling
 Typically, one GP model for each objective function (tractability)

Challenge #2: Acquisition function design
 Capture the trade-off between multiple objectives
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Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

Hypervolume improvement 
EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020] 

Wrapper methods via single-objective acquisition functions
USeMO [Belakaria et al., 2020] 

 Information-theoretic methods
𝜖𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] 
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Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

Hypervolume improvement 
EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020] 

Wrapper methods via single-objective acquisition functions
USeMO [Belakaria et al., 2020] 

 Information-theoretic methods
𝜖𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] 
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Reduction via Random Scalarization

Reduce the problem to single objective optimization

ParEGO [Knowles et al., 2006]

BO over scalarized objective function using EI

𝑓𝑓 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 .𝑓𝑓𝑖𝑖 (𝑥𝑥)

Scalar weights are sampled from a uniform distribution

MOBO-RS [Paria et al., 2019]

Optimize scalarized objective function over a set of scalar 
weight-vectors using a prior specified by the user
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Reduction via Random Scalarization

ParEGO [Knowles et al., 2006]

BO over scalarized objective function using EI

𝑓𝑓 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 .𝑓𝑓𝑖𝑖 (𝑥𝑥)

Scalar weights are sampled from a uniform distribution

MOBO-RS [Paria et al., 2019]

Optimize scalarized objective function over a set of scalar 
weight-vectors using a prior specified by the user

Hard to define the scalars or 
specify priors over scalars, which 
can lead to sub-optimal results
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Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

Hypervolume improvement 
EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020] 

Wrapper methods via single-objective acquisition functions
USeMO [Belakaria et al., 2020] 

 Information-theoretic methods
𝜖𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] 
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Hypervolume Improvement Approaches

EHI: Expected improvement in PHV [Emmerich et al., 2008] 

SUR: Probability of improvement in PHV [Picheny et al., 2015] 

SMSego [Ponweiser et al., 2008] 

 Improves the scalability of PHV computation by automatically 
reducing the search space

qEHVI [Daulton et al., 2020] 

Differentiable hypervolume improvement
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qEHVI Algorithm [Daulton et al., 2020]

Parallel EHVI via the Inclusion-Exclusion Principle

Practical since q is usually small
The computation of all intersections be parallelized 
The formulation simplifies computation of overlapping 

hypervolumes
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qEHVI Algorithm [Daulton et al., 2020] 

Differentiable Hypervolume Improvement

Sample path gradients via the reparameterization trick
Unbiased gradient estimator

𝔼𝔼[𝛻𝛻𝒙𝒙𝛼𝛼
̂
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝒙𝒙)] = 𝛻𝛻𝒙𝒙𝛼𝛼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝒙𝒙)
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qEHVI Algorithm [Daulton et al., 2020] 

Vehicle Crash Safety Branin-Currin
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Hypervolume Improvement Approaches

EHI: Expected improvement in PHV [Emmerich et al., 2008] 

SUR: Probability of improvement in PHV [Picheny et al., 2015] 

SMSego [Ponweiser et al., 2008] 

 Improves the scalability of PHV computation by automatically 
reducing the search space

qEHVI [Daulton et al., 2020] 

Differentiable hypervolume improvement
Can potentially lead to more 

exploitation behavior resulting in 
sub-optimal solutions
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Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

Hypervolume improvement 
EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020] 

Wrapper methods via single-objective acquisition functions
USeMO [Belakaria et al., 2020] 

 Information-theoretic methods
𝜖𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] 



19

USeMO Framework [Belakaria et al., 2020] 
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USeMO Framework [Belakaria et al., 2020] 

Allows us to leverage acquisition functions from single-
objective BO to solve multi-objective BO problems
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USeMO Framework [Belakaria et al., 2020] 

Allows us to leverage acquisition functions from single-
objective BO to solve multi-objective BO problems

How to (automatically) select 
AF configurations to create 

effective MOBO algorithms?
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Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

Hypervolume improvement 
EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020] 

Wrapper methods via single-objective acquisition functions
USeMO [Belakaria et al., 2020] 

 Information-theoretic methods
𝜖𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] 
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𝜖𝜖-PAL Algorithm [Zuluaga et al., 2013]

Classifies candidate inputs into three categories using 
the learned GP models
Pareto-optimal
Not Pareto-optimal
Uncertain

 In each iteration, selects the candidate input for 
evaluation to minimize the size of uncertain set

Accuracy of pruning depends critically on 𝜖𝜖 value
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𝜖𝜖-PAL Algorithm [Zuluaga et al., 2013]

Classifies candidate inputs into three categories using 
the learned GP models
Pareto-optimal
Not Pareto-optimal
Uncertain

 In each iteration, selects the candidate input for 
evaluation to minimize the size of uncertain set

Accuracy of pruning depends critically on 𝜖𝜖 value

Limited applicability as it 
works only for discrete set of 

candidate inputs 
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

Key Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒𝜒∗

Reminder: Set of input designs with optimal trade-offs 
is called the optimal Pareto set  𝜒𝜒∗
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

Key Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒𝜒∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝜒𝜒∗ 𝐷𝐷)
= 𝐻𝐻 𝜒𝜒∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝜒𝜒∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝜒𝜒∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝜒𝜒∗)]
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

Key Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒𝜒∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝜒𝜒∗ 𝐷𝐷)
= 𝐻𝐻 𝜒𝜒∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝜒𝜒∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝜒𝜒∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝜒𝜒∗)]

Equivalent to expected 
reduction  in entropy over 

the pareto set 𝜒𝜒∗
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

Key Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒𝜒∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝜒𝜒∗ 𝐷𝐷)
= 𝐻𝐻 𝜒𝜒∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝜒𝜒∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝜒𝜒∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝜒𝜒∗)]

Due to symmetric property 
of information gain
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

Key Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒𝜒∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝜒𝜒∗ 𝐷𝐷)
= 𝐻𝐻 𝜒𝜒∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝜒𝜒∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝜒𝜒∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝜒𝜒∗)]

Entropy of factorizable 
Gaussian distribution 
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

Key Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒𝜒∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝜒𝜒∗ 𝐷𝐷)
= 𝐻𝐻 𝜒𝜒∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝜒𝜒∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝜒𝜒∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝜒𝜒∗)]

input dimension d

Requires computationally 
expensive approximation using 

expectation propagation 
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MESMO Algorithm [Belakaria et al., 2019]

Key Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌𝑌∗

Reminder: Set of function values corresponding to the 
optimal Pareto set 𝜒𝜒∗is called the optimal Pareto front 𝑌𝑌∗
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MESMO Algorithm [Belakaria et al., 2019]

Key Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌𝑌∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝑌𝑌∗ 𝐷𝐷)
= 𝐻𝐻 𝑌𝑌∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝑌𝑌∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]
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MESMO Algorithm [Belakaria et al., 2019]

Key Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌𝑌∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝑌𝑌∗ 𝐷𝐷)
= 𝐻𝐻 𝑌𝑌∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝑌𝑌∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]

Equivalent to expected 
reduction  in entropy over 

the pareto front 𝑌𝑌∗
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MESMO Algorithm [Belakaria et al., 2019]

Key Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌𝑌∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝑌𝑌∗ 𝐷𝐷)
= 𝐻𝐻 𝑌𝑌∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝑌𝑌∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]

Due to symmetric property 
of information gain
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MESMO Algorithm [Belakaria et al., 2019]

Key Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌𝑌∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝑌𝑌∗ 𝐷𝐷)
= 𝐻𝐻 𝑌𝑌∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝑌𝑌∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]

Entropy of factorizable 
Gaussian distribution 
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MESMO Algorithm [Belakaria et al., 2019]

Key Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌𝑌∗

𝛼𝛼 𝑥𝑥 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 ,𝑌𝑌∗ 𝐷𝐷)
= 𝐻𝐻 𝑌𝑌∗ 𝐷𝐷) − 𝔼𝔼𝑦𝑦[𝐻𝐻 𝑌𝑌∗ 𝐷𝐷 ∪ {𝑥𝑥,𝑦𝑦})]
= 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]

Output dimension k ≪ d

Closed form using properties of  entropy 
and truncated Gaussian distribution 



37

MESMO Algorithm [Belakaria et al., 2019]

The first term is the entropy of a factorizable 𝑘𝑘-dimensional 
Gaussian distribution 𝑃𝑃 𝑦𝑦 𝐷𝐷, 𝑥𝑥)

𝛼𝛼 𝑥𝑥 = 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]

𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) = 𝐾𝐾(1+ln(2𝜋𝜋))
2

+ ∑𝑗𝑗=1𝑘𝑘 ln(𝜎𝜎𝑗𝑗(𝑥𝑥))
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MESMO Algorithm [Belakaria et al., 2019]

We can approximately compute the second term via 
Monte-Carlo sampling (𝑆𝑆 is the number of samples)

𝛼𝛼 𝑥𝑥 = 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)]

𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)] ≈ 1
𝑆𝑆
∑𝑠𝑠=1𝑆𝑆 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌𝑠𝑠∗)
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MESMO Algorithm [Belakaria et al., 2019]

Approximate computation via Monte-Carlo sampling

Two key steps
 How to compute Pareto front samples 𝑌𝑌𝑠𝑠∗ ?
 How to compute the entropy with respect to a given Pareto 

front sample 𝑌𝑌𝑠𝑠∗?

𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)] ≈ 1
𝑆𝑆
∑𝑠𝑠=1𝑆𝑆 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌𝑠𝑠∗)
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MESMO Algorithm [Belakaria et al., 2019]

Approximate computation via Monte-Carlo sampling

How to compute Pareto front samples 𝑌𝑌𝑠𝑠∗ ?
Sample functions from posterior GPs via random Fourier 

features 
Solve a cheap MO problem over the sampled functions 𝑓𝑓1 …𝑓𝑓𝑘𝑘

to compute sample Pareto front

𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌∗)] ≈ 1
𝑆𝑆
∑𝑠𝑠=1𝑆𝑆 𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌𝑠𝑠∗)
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MESMO Algorithm [Belakaria et al., 2019]

How to compute the entropy with respect to a given 
Pareto front sample 𝑌𝑌𝑠𝑠∗?

𝑌𝑌𝑠𝑠∗ = 𝒗𝒗𝟏𝟏, … ,𝒗𝒗𝒍𝒍 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝒗𝒗𝒊𝒊 = 𝑣𝑣 1𝑖𝑖 , … ,𝑣𝑣𝐾𝐾𝑖𝑖 , 
𝑦𝑦𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗𝑠𝑠

∗ = max 𝑣𝑣 11 , … , 𝑣𝑣𝑗𝑗𝑙𝑙 ∀𝑗𝑗 ∈ {1, … ,𝐾𝐾}

Decompose the entropy of a set of independent variables into a 
sum of entropies of individual variables

 Model each component 𝑦𝑦𝑗𝑗 as a truncated Gaussian distribution
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MESMO Algorithm [Belakaria et al., 2019]

How to compute the entropy with respect to a given 
Pareto front sample 𝑌𝑌𝑠𝑠∗?

𝑌𝑌𝑠𝑠∗ = 𝒗𝒗𝟏𝟏, … ,𝒗𝒗𝒍𝒍 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝒗𝒗𝒊𝒊 = 𝑣𝑣 1𝑖𝑖 , … ,𝑣𝑣𝐾𝐾𝑖𝑖 , 
𝑦𝑦𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗𝑠𝑠

∗ = max 𝑣𝑣 11 , … , 𝑣𝑣𝑗𝑗𝑙𝑙 ∀𝑗𝑗 ∈ {1, … ,𝐾𝐾}

𝐻𝐻 𝑦𝑦 𝐷𝐷, 𝑥𝑥,𝑌𝑌𝑠𝑠∗) ≈ ∑𝑗𝑗=1𝐾𝐾 𝐻𝐻 𝑦𝑦𝑗𝑗| 𝐷𝐷, 𝑥𝑥,𝑦𝑦𝑗𝑗𝑠𝑠
∗
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MESMO Algorithm [Belakaria et al., 2019]

Final acquisition function

𝛼𝛼 𝑥𝑥 ≈ 1
𝑆𝑆
∑𝑠𝑠=1𝑆𝑆 ∑𝑗𝑗=1𝐾𝐾 [

𝛾𝛾𝑠𝑠
𝑗𝑗 𝑥𝑥 𝜙𝜙 𝛾𝛾𝑠𝑠

𝑗𝑗 𝑥𝑥

2Φ 𝛾𝛾𝑠𝑠
𝑗𝑗 𝑥𝑥

− lnΦ 𝛾𝛾𝑠𝑠
𝑗𝑗 𝑥𝑥 ]

Closed form

where 𝛾𝛾𝑠𝑠
𝑗𝑗 𝑥𝑥 =

𝑦𝑦𝑗𝑗𝑠𝑠
∗ −𝜇𝜇𝑗𝑗 𝑥𝑥

𝜎𝜎𝑗𝑗 𝑥𝑥
, 𝜙𝜙 and Φ are the p.d.f and 

c.d.f of a standard normal distribution 
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MESMO Algorithm [Belakaria et al., 2019]
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MOBO Experiments and Results #1

 MESMO is better than PESMO

 MESMO converges faster

 MESMO is robust to the number of samples (even a single sample!)

Compiler Settings OptimizationNetwork on Chip Design
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MOBO Experiments and Results #2

 MESMO is highly scalable when compared to PESMO

 MESMO with one sample is comparable to ParEGO

 Time for PESMO and SMSego increases significantly with the 
number of objectives
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Multi-Objective Bayesian Optimization 
With

Black-Box Constraints
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MOBO with Black-Box Constraints: The Problem

Goal: find the approximate (optimal) constrained Pareto 
set by minimizing the total resource cost of experiments

𝑐𝑐1 𝑥𝑥
…
𝑐𝑐𝐿𝐿 𝑥𝑥

Blackbox
Experiment𝑥𝑥

Objectives and constraints
evaluation of design 𝑥𝑥

𝑓𝑓1 𝑥𝑥
…

𝑓𝑓𝐾𝐾 𝑥𝑥
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MOBO with Black-Box Constraints: The Problem

Electrified aviation power system design for UAVs [Belakaria 

et al., 2021]

Multiple Objectives: total energy and mass

Safety constraints: thresholds for motor temperature and 
voltage of cells 

Amazon Prime Air 
autonomous unmanned 

aerial vehicle (UAV)
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MESMOC Algorithm [Belakaria et al., 2021]

Extension of MESMO for constrained setting

𝛼𝛼 𝑥𝑥 ≈ 1
𝑆𝑆
∑𝑠𝑠=1𝑆𝑆 [∑𝑗𝑗=1𝐾𝐾 𝛾𝛾𝑠𝑠

𝑓𝑓𝑗𝑗 𝑥𝑥 𝜙𝜙 𝛾𝛾𝑠𝑠
𝑓𝑓𝑗𝑗 𝑥𝑥

2Φ 𝛾𝛾𝑠𝑠
𝑓𝑓𝑗𝑗 𝑥𝑥

− lnΦ 𝛾𝛾𝑠𝑠
𝑓𝑓𝑗𝑗 𝑥𝑥 +

∑𝑗𝑗=1𝐿𝐿
𝛾𝛾𝑠𝑠
𝑐𝑐𝑗𝑗 𝑥𝑥 𝜙𝜙 𝛾𝛾𝑠𝑠

𝑐𝑐𝑗𝑗 𝑥𝑥

2Φ 𝛾𝛾𝑠𝑠
𝑐𝑐𝑗𝑗 𝑥𝑥

− lnΦ 𝛾𝛾𝑠𝑠
𝑐𝑐𝑗𝑗 𝑥𝑥 ]

Closed form
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MESMOC Algorithm [Belakaria et al., 2021]

Solves a cheap MOO over sampled functions ( �𝑓𝑓1, … ,�𝑓𝑓𝐾𝐾 ) 
constrained by sampled constraints ( �𝑐𝑐1, … �, 𝑐𝑐𝐿𝐿 )

𝑌𝑌𝑠𝑠∗ ← arg max
𝑥𝑥∈𝜒𝜒

( �𝑓𝑓1, … ,�𝑓𝑓𝐾𝐾 )

s.t. (�𝑐𝑐1 ≥ 0, … �, 𝑐𝑐𝐿𝐿 ≥ 0)

Acquisition function optimization constrained by 
predictive mean of constraints 

𝑥𝑥𝑡𝑡 ← arg max
𝑥𝑥∈𝜒𝜒

𝛼𝛼𝑡𝑡
s.t. (𝜇𝜇𝑐𝑐1(𝑥𝑥) ≥ 0, … , 𝜇𝜇𝑐𝑐𝐿𝐿(𝑥𝑥) ≥ 0)
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MESMOC Experiments and Results

 MESMOC finds near-optimal Pareto front in ~250 evaluations 
out of ~168,000 designs (<1%)

 95% of the inputs selected by MESMOC are valid, while the best 
among baselines was only 39% 
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Multi-Objective Bayesian Optimization 
With

Multi-Fidelity Function Evaluations
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Multi-Fidelity Multi-Objective BO: The Problem

Continuous-fidelity is the most general case
Discrete-fidelity is a special case

Goal: find the approximate (optimal) Pareto set by 
minimizing the total resource cost of experiments

Discrete fidelity Continuous fidelity
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Multi-Fidelity Multi-Objective BO: Key Challenges

How to model functions with multiple fidelities?

How to jointly select the input design and fidelity-vector 
pair in each BO iteration?

How to progressively select higher fidelity experiments?

Already covered
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iMOCA Algorithm [Belakaria et al., 2021]

Key Idea: Select the input and fidelity-vector that 
maximizes information gain per unit resource cost about 
the optimal Pareto front 𝑌𝑌∗

𝛼𝛼 𝒙𝒙, 𝒛𝒛 = 𝐼𝐼 𝒙𝒙,𝒚𝒚, 𝒛𝒛 ,𝑌𝑌∗ 𝐷𝐷)/𝐶𝐶(𝒙𝒙, 𝒛𝒛)
= (𝐻𝐻 𝒚𝒚 𝐷𝐷,𝒙𝒙, 𝒛𝒛) − 𝔼𝔼𝑌𝑌∗[𝐻𝐻 𝒚𝒚 𝐷𝐷,𝒙𝒙, 𝒛𝒛,𝑌𝑌∗)])/𝐶𝐶(𝒙𝒙, 𝒛𝒛)

= (∑𝑗𝑗=1𝐾𝐾 ln 2𝜋𝜋𝜋𝜋 𝜎𝜎𝑔𝑔𝑗𝑗 𝒙𝒙, 𝑧𝑧𝑗𝑗

− 1
𝑆𝑆
∑𝑠𝑠=1𝑆𝑆 ∑𝑗𝑗=1𝐾𝐾 𝐻𝐻 𝑦𝑦𝑗𝑗| 𝐷𝐷,𝒙𝒙, 𝑧𝑧𝑗𝑗 ,𝑓𝑓𝑠𝑠

𝑗𝑗∗ )/ 𝐶𝐶(𝒙𝒙, 𝒛𝒛)

where 𝐶𝐶 𝒙𝒙, 𝒛𝒛 = ∑𝑗𝑗=1𝐾𝐾 𝐶𝐶 𝒙𝒙,𝑧𝑧𝑗𝑗
𝐶𝐶 𝒙𝒙,𝑧𝑧𝑗𝑗

∗ is the normalized cost over different functions
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iMOCA Algorithm [Belakaria et al., 2021]

Assumption: Values at lower fidelities are smaller than maximum 
value of the highest fidelity 𝑦𝑦𝑗𝑗 ≤ 𝑓𝑓𝑠𝑠

𝑗𝑗∗ ∀𝑗𝑗 ∈ {1, … ,𝐾𝐾}

Truncated Gaussian approximation (Closed-form)

𝛼𝛼 𝒙𝒙, 𝒛𝒛 ≈ 1
𝐶𝐶 𝒙𝒙,𝒛𝒛 𝑆𝑆

∑𝑠𝑠=1𝑆𝑆 ∑𝑗𝑗=1𝐾𝐾 [
𝛾𝛾𝑠𝑠

(𝑔𝑔𝑗𝑗)
𝜙𝜙 𝛾𝛾𝑠𝑠

(𝑔𝑔𝑗𝑗)

2Φ 𝛾𝛾𝑠𝑠
(𝑔𝑔𝑗𝑗) − lnΦ 𝛾𝛾𝑠𝑠

(𝑔𝑔𝑗𝑗) ]

Where 𝛾𝛾𝑠𝑠
(𝑔𝑔𝑗𝑗)=

𝑓𝑓𝑠𝑠
𝑗𝑗∗−𝜇𝜇𝑔𝑔𝑗𝑗
𝜎𝜎𝑔𝑔𝑗𝑗

, 𝝓𝝓 and 𝚽𝚽 are the p.d.f and c.d.f of a standard 

normal distribution
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iMOCA Algorithm [Belakaria et al., 2021]

Challenges of large (potentially infinite) fidelity space
Select costly fidelity with less accuracy 
Tendency to select lower fidelities due to normalization by cost

 iMOCA reduces the fidelity search space using a scheme 
similar to the BOCA algorithm
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iMOCA Algorithm [Belakaria et al., 2021]
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iMOCA Experiments and Results 

 iMOCA performs better than all baselines 

 Both variants of iMOCA converge at a much lower cost

 Robust to the number of samples
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iMOCA Experiments and Results

Cost reduction factor
Although the metric gives advantage to baselines, the results in 

the table show a consistently high gain ranging from 52% to 85%
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Software and code

 github.com/HIPS/Spearmint/tree/PESM

 github.com/belakaria/MESMO

 github.com/belakaria/USeMO

 botorch.org/tutorials/multi_objective_bo

 github.com/yunshengtian/DGEMO

 github.com/belakaria/MESMOC

 github.com/belakaria/MF-OSEMO

 github.com/belakaria/iMOCA
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Questions ?



1

Summary and Open Challenges in BO



2

Outline of the Tutorial

Background on GPs and Single-Objective BO

Bayesian Optimization over Combinatorial Spaces

Bayesian Optimization over Hybrid Spaces

Break

Multi-Fidelity Bayesian Optimization

Constrained Bayesian Optimization

Multi-Objective Bayesian Optimization

Summary and Outstanding Challenges in BO
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Open Challenges in BO

High-dimensional BO
 Need more effective approaches for high-dimensional spaces

BO over Combinatorial Structures
How to combine domain knowledge, kernels, and (geometric) 

deep learning to build effective surrogate models?
Effective methods to select large and diverse batches?

BO over Hybrid Spaces
Methods to sample functions from GP posterior?
Effective latent space BO methods?
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Open Challenges in BO

Constrained BO
 Need more effective approaches for input spaces, where no. 

of invalid inputs >> no. of valid inputs

BO over Nested Function Pipelines
 Relatively less explored problem

BO with Resource Constraints
 Real-world experiments need resources and setup time
 Critical for BO deployment in science and engineering labs
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