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Drug/Vaccine Design

hAccelerate the discovery of promising designs 

Credit: 
MIMA healthcare
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Nanoporous Materials Design

hSustainability applications
5Storing gases (e.g., hydrogen powered cars)
5Separating gases (e.g., carbon dioxide from flue gas of 

coalfired power plants)
5Detecting gases (e.g., detecting pollutants in outdoor air)



AAAI-2023 Tutorial on Recent Advances in Bayesian Optimization 4

Sustainable Hardware Design for Data Centers 

America’s Data Centers Are WasAng Huge 
Amounts of Energy

By 2020, data centers are projected to consume roughly 140 
billion kilowa=-hours annually, cos?ng American businesses 
$13 billion annually in electricity bills and emiCng nearly 150 
million metric tons of carbon pollu?on

Report from Natural Resources Defense Council:. 
h"ps://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

High-performance and Energy-
efficient manycore chips
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Auto ML and Hyperparameter Tuning

hAccuracy of models critically depends on hyper-parameters
5Optimization algorithm, learning rates, momentum, batch 

normalization, batch sizes, dropout rates, weight decay, data 
augmentation, …
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A/B Tes>ng to Configure Websites
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Making Delicious Cookies
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Making AlphaGo Better
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Neuroscience and Brain Analy>cs

Credit: h#ps://www.nature.com/ar3cles/s41467-018-03657-3
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Common AFributes of the Search Problem

hSearch Space: Many candidate choices (inputs)

hObjec?ve func?on: Need to perform an expensive 
experiment to evaluate the objec?ve value of any input

hOp?miza?on problem: find the candidate input with 
highest objec?ve func?on value
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Common Attributes of the Search Problem

hSearch Space: Many candidate choices (inputs)

hObjec?ve func?on: Need to perform an expensive 
experiment to evaluate the objec?ve value of any input

hOp?miza?on problem: find the candidate input with 
highest objec?ve func?on value

Cannot afford  
exhausBve search
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Common AFributes of the Search Problem

hSearch Space: Many candidate choices (inputs)

hObjec?ve func?on: Need to perform an expensive 
experiment to evaluate the objec?ve value of any input

hOp?miza?on problem: find the candidate input with 
highest objec?ve func?on value

Trial and Error?
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Common AFributes of the Search Problem

hSearch Space: Many candidate choices (inputs)

hObjec?ve func?on: Need to perform an expensive 
experiment to evaluate the objec?ve value of any input

hOp?miza?on problem: find the candidate input with 
highest objec?ve func?on value

Can we do beGer than 
trial-and-error?
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Accelerate Search via Bayesian Op>miza>on

hEfficiently optimize expensive black-box functions

𝑥∗ = 𝑎𝑟𝑔max
"∈$

𝑓(𝑥)

• Black-box queries (aka experiments) are expensive

𝑥 𝑓(𝑥)

input Func7on evalua7on
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Bayesian Op>miza>on: Key Idea

hBuild a surrogate statistical model and use it to 
intelligently search the space
5Replace expensive queries with cheaper queries
5Use uncertainty of the model to select expensive queries

Statistical model M AcquisiAon funcAon 
opAmizaAon

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive funcAon evaluaAon
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Bayesian Optimization: Three Key Elements

h StaBsBcal model (e.g., Gaussian process)

h AcquisiBon funcBon (e.g., Expected improvement)

h AcquisiBon funcBon opBmizer (e.g., local search)

StaAsAcal model M AcquisiAon funcAon 
opAmizaAon

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive function evaluation
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BO Dimensions: Input Space

hCon0nuous space
5All variables of input 𝑥 are conBnuous

hDiscrete / Combinatorial space
5Sequences, trees, graphs, sets, permutaBons etc.

hHybrid space
5𝑥 = mixture of 𝑥/ (discrete) and 𝑥0 (conBnuous) variables



AAAI-2023 Tutorial on Recent Advances in Bayesian Optimization 18

BO Dimensions: No. of Objec>ves

hSingle objec0ve
5For example, finding hyperparameters to opBmize accuracy

hMul0ple objec0ves
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BO Dimensions: No. of Fideli>es

hSingle-fidelity se>ng
5Most expensive and accurate funcBon evaluaBon

hMul0-fidelity se>ng
5FuncBon evaluaBons with varying trade-offs in cost and accuracy
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BO Dimensions: Constraints

hUnconstrained se>ng
5 all inputs are valid

hConstrained se>ng

Drugs/Vaccines 
that are safe
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Important References and SoSware

hBayesian Op0miza0on Book by Roman GarneF
5 hGps://bayesoptbook.com/
5 Excellent contribuBon by Roman to both AI researchers and 

pracBBoners! Thanks Roman!!

hBoTorch SoIware
5hGps://botorch.org/
5Excellent contribuBon by Meta’s AdapBve ExperimentaBon team!

https://bayesoptbook.com/
https://botorch.org/
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisi?on func?ons, and BoTorch demo 

hBayesian Op?miza?on over Discrete/Hybrid Spaces

hMul?-fidelity Bayesian Op?miza?on

hHigh-Dimensional BO and BoTorch Hands-on demo

hMul?-Objec?ve BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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Bayesian Op>miza>on Framework

h StaBsBcal model (e.g., Gaussian process)

h AcquisiBon funcBon (e.g., Expected improvement)

h AcquisiBon funcBon opBmizer (e.g., local search)

Statistical model M AcquisiAon funcAon 
opAmizaAon

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive funcAon evaluaAon
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Bayesian Op+miza+on: Illustra+on

24

Credit: Ryan Adams 
https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf
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Bayesian Op+miza+on: Illustra+on
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Bayesian Optimization: Illustration
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Bayesian Op+miza+on: Illustra+on
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Bayesian Op+miza+on: Illustra+on
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Bayesian Optimization: Three Key Elements 

29

h StaBsBcal model (e.g., Gaussian process)

h AcquisiBon funcBon (e.g., Expected improvement)

h AcquisiBon funcBon opBmizer (e.g., local search)

StaAsAcal model M Acquisition function 
optimization

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive function evaluation
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BO needs a Probabilis+c Model

30

hTo make predictions on unknown input

hTo quantify the uncertainty in predictions

hOne popular class of such models are Gaussian 
Processes (also called GPs)

Flexibility
Principled 

uncertainty 
es?ma?on

SpecificaBon of 
prior beliefs about 

rich funcBon 
classes

Non-parametric, Bayesian and Kernel driven model
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Gaussian Process

31

hStochastic process definition
5Given any set of input points 𝑥1, 𝑥2, … , 𝑥3 , the output values 

follows a multi-variate Gaussian distribution

hThe covariance matrix Σ is given by a kernel function 
𝑘 𝑥, 𝑥) , i.e., Σ*+ = 𝑘 𝑥* , 𝑥+
5Kernel captures the similarity between 𝑥 and 𝑥’

hChoice of kernel 𝑘 𝑥, 𝑥) is critical for good performance
5Allows to incorporate domain knowledge (e.g., Morgan 

fingerprints in chemistry)
5Matern kernel is a popular choice for continuous spaces 

[𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), … , 𝑓(𝑥𝑚)] ~𝒩(0, Σ)
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Gaussian Process: inference and training

32

hGiven training data {(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … (𝑥𝑚, 𝑦𝑚)}, the 
prediction for an unseen point 𝑥′

h Training procedure: searching for hyper-parameters by 
optimizing the marginal log-likelihood 

𝑓(𝑥′) ~𝒩(𝑦%, 𝜎%)

𝑦8 = 𝒌∗𝑲:𝟏𝒚
𝜎8 = 𝑘(𝑥′, 𝑥′)− 𝒌∗𝐾:1 𝑘∗

𝒌∗ = [𝑘(𝑥′, 𝑥1),𝑘(𝑥′, 𝑥2),… , 𝑘(𝑥′, 𝑥𝑚)]
𝑲𝒊𝒋 = 𝑘(𝑥', 𝑥𝑗)

log 𝑝 𝑌 = −
1
2𝑌

*𝑲+𝟏𝑌 −
1
2 log det 𝑲 −

𝑛
2 log 2𝜋
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Gaussian Process: Two Views

33

hFunction space view: distribution over functions 
5Function class is characterized by kernel

hWeight space view: Bayesian linear regression in 
kernel’s feature space

𝑓 𝑥 = 𝑤K𝜏 𝑥 𝑘 𝑥, 𝑥8 =< 𝜏 𝑥 , 𝜏 𝑥8 >

Prior Posterior
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Alterna+ve Surrogate Model Choices

34

hRandom forest [Hutter et al., 2010, 2011]

hBayesian neural networks

hClassification models
5BORE [Tiao et al., 2021]  and LFBO [Song et al., 2022]

5Can work with any input space (continuous, discrete, hybrid)
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Bayesian Op+miza+on: Three Key Elements 

35

h Statistical model (e.g., Gaussian process)

h Acquisition function (e.g., Expected improvement)

h Acquisition function optimizer (e.g., local search)

StaAsAcal model M AcquisiAon funcAon 
opAmizaAon

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive funcAon evaluaAon
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Acquisition Function

36

h Intui?on: captures u?lity of evalua?ng an input

hChallenge: trade-off explora?on and exploita?on 
5 ExploraBon: seek inputs with high variance
5 ExploitaBon: seek inputs with high mean
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Acquisi+on Func+on: Examples

37

hUpper Confidence Bound (UCB)
5Selects input that maximizes upper confidence bound

𝐴𝐹 𝑥 = 𝑦∗(𝑥) + 𝛽 𝜎∗(𝑥)

hExpected Improvement (EI)
5Selects input with highest expected improvement over the 

incumbent

hThompson Sampling (TS)
5Selects optimizer of a function sampled from the surrogate 

model’s posterior

hKnowledge Gradient 
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Informa+on-Theore+c Acquisi+on Func+ons

38

hKey principle: select inputs for evalua?on which provide 
maximum informa?on about the op?mum 

hConcretely, pick observa?ons which quickly decrease 
the entropy of distribu?on over the op?mum

hDesign choices of 𝛼 leads to different algorithms

𝐴𝐹 𝑥 = Expected decrease in entropy
𝐴𝐹 𝑥 = 𝐻 𝛼 𝐷) − 𝐸L[𝐻 𝛼 𝐷 ∪ {𝑥, 𝑦}

= Information Gain(𝛼; 𝑦)
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Informa+on-Theore+c Acquisi+on Func+ons

39

hDesign choices of 𝛼 leads to different algorithms

h𝛼 as input location of optima 𝑥∗
5Entropy Search (ES) / Predictive Entropy Search (PES)
5 Intuitive but requires expensive approximations

h𝛼 as output value of optima 𝑦∗
5Max-value Entropy Search (MES) and it’s variants
5Computationally cheaper and more robust

h Generalization via decision-theoretic entropies [Neiswanger et al., 2022]

h

𝐴𝐹 𝑥 = Expected decrease in entropy
𝐴𝐹 𝑥 = 𝐻 𝛼 𝐷) − 𝐸L[𝐻 𝛼 𝐷 ∪ {𝑥, 𝑦}

= Information Gain(𝛼; 𝑦)
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Non-Myopic / Lookahead Acquisition Functions

40

hMyopic acquisi?on func?ons (e.g., EI) reason 
about immediate u?lity

hNon-myopic variants consider BO as a MDP and 
reason about longer decision horizons

D x

D1

…
…

D’’1

D’’’1

D’2
…

D’’2

D’’’2

…

…
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EI and KG as One-step Lookahead

41

h Idea: Expected marginal gain in some u?lity 𝑢 𝐷

𝐴𝐹 = ∫ 𝑢 𝐷) − 𝑢 𝐷 𝑝 𝑦 𝑥, 𝐷)𝑑𝑦

hFor Expected Improvement (EI), u?lity is the simple 
reward
5𝑢 𝐷 = max 𝜇M(𝑥)
5maximum picked from points evaluated during BO search
5Closed-form expression

hFor Knowledge Gradient (KG), u?lity is the global reward 
5𝑢 𝐷 = 𝑚𝑎𝑥N∈P 𝜇M(𝑥)
5maximum picked from the enBre search space 𝑋
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Non-Myopic / Lookahead Acquisition Functions

42

hNon-myopic variants consider BO as MDP and reason 
about longer decision horizons

hChallenge: curse of dimensionality

hSome solu?ons [Lam et al., 2016, Lee et al., 2020, Gonzalez et al 2016, Jiang et al 2020]

5MulB-step lookahead policies with approximaBons 
5Rollout based approximate dynamic programming

𝑢Q 𝑥 𝐷 = 𝑢1 𝑥 𝐷 + 𝐸L [maxN8 𝑢R:1 𝑥8 𝐷 ∪ {𝑥, 𝑦})]

𝑢( 𝑥 𝐷 = 𝑢) 𝑥 𝐷 + 𝐸* [max#)
{𝑢 𝑥) 𝐷) + 𝐸*)[max#+

{𝑢 𝑥+ 𝐷+)… . }]}]
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Bayesian Op+miza+on: Three Key Elements 

43

h Statistical model (e.g., Gaussian process)

h Acquisition function (e.g., Expected improvement)

h Acquisition function optimizer (e.g., local search)

Statistical model M AcquisiAon funcAon 
opAmizaAon

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive funcAon evaluaAon
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Acquisition Function Optimizer

44

hChallenge: non-convex/mul?-modal op?miza?on problem

hCommonly used approaches for con?nuous spaces

5Space parBBoning methods (e.g., DIRECT, LOGO)

5Gradient based methods (e.g., Gradient descent)

5EvoluBonary search (e.g., CMA-ES)
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Scaling GPs for Bayesian Op1miza1on

𝑘(𝑋, 𝑋)GPs require: n
n

𝑂(𝑛S) Time v

−1

𝑘(𝑋, 𝑋) log det 𝑘(𝑋, 𝑋)

Up to 10,000s:                           Cholesky or
Conjugate
gradients

stochastic

Lanczos
quadrature

Approximate iterative methods
(Cutajar et al., 2016; Gardner et al., 
2018; Wang et al., 2019; Burt et al., 

2021; Wenger et al., 2022)

(More is possible, but 
BayesOpt requires 
training many GPs)
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Scaling GPs for Bayesian Optimization

𝑘(𝑋, 𝑋)GPs require: n
n

𝑂(𝑛S) Time v

−1

𝑘(𝑋, 𝑋) log det 𝑘(𝑋, 𝑋)

Up to 10,000s:                           Cholesky or
Conjugate
gradients

stochastic

Lanczos
quadrature

Approximate iterative methods
(Cutajar et al., 2016; Gardner et al., 
2018; Wang et al., 2019; Burt et al., 

2021; Wenger et al., 2022)

(More is possible, but 
BayesOpt requires 
training many GPs)

More data: use Stochastic 
Variational Inference

(Hensman et al., 2013; Salimbeni et 
al., 2018; Jankowiak et al., 2020)

(Lower is better)
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More Expressive Models for More Data

class GP(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):

super().__init__(train_x, train_y, likelihood)
self.covar_module = gpytorch.kernels.RBFKernel()
self.mean_module = gpytorch.kernels.MeanModule()

def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

GP Model with Deep Kernel:

X GP 𝔼 𝑓 𝑧 , Cov 𝑓 𝑧 , 𝑓 𝑧-

GPyTorch model implementation:

Z
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More Expressive Models for More Data
GP Model with Deep Kernel:

X GP 𝔼 𝑓 𝑧 , Cov 𝑓 𝑧 , 𝑓 𝑧-

GPyTorch model implementation:

Z

class DKLGP(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):

super().__init__(train_x, train_y, likelihood)
self.covar_module = gpytorch.kernels.RBFKernel()
self.mean_module = gpytorch.kernels.MeanModule()
self.feature_extractor = torch.nn.Sequential(

torch.nn.Linear(train_x.size(-1), 32),
torch.nn.BatchNorm1d(),
torch.nn.ReLU(),
torch.nn.Linear(32, 16),
torch.nn.BatchNorm1d(),

)

def forward(self, x):
z = self.feature_extractor(x)
mean_z = self.mean_module(z)
covar_z = self.covar_module(z)
return gpytorch.distributions.MultivariateNormal(mean_z, covar_z)
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BO Software: BoTorch

49

hScalability via automa?c differen?a?on
5PyTorch/GpyTorch

hMonte-Carlo acquisi?on func?ons
5Express acquisiBon funcBons as expectaBons of uBlity 

funcBons
5Compute expectaBons via Monte-Carlo sampling 
5Use the reparameterizaBon trick to make acquisiBon funcBons 

differenBable

hOther soZware: Trieste (based on TensorFlow)

hNot ac?vely maintained: GPyOpt, Spearmint
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisition functions, and BoTorch demo 

hBayesian Optimization over Discrete/Hybrid Spaces

hMulti-fidelity Bayesian Optimization

hHigh-Dimensional BO and BoTorch Hands-on demo

hMulti-Objective BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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Combinatorial/Discrete BO

hGiven: a combinatorial space of structures 𝑋 (e.g., 
sequences, trees, graphs) 

hFind: op?mized combinatorial structure 𝑥∗ ∈ 𝑋

hSpace of binary structures 𝑋 = 0,1 C

5Each structure 𝑥 ∈ 𝑋 be represented using 𝑛 binary variables 
𝑥1, 𝑥2 , … , 𝑥Y

hCategorical variables
5𝑥Z can take more than two candidate values

hHow to deal with categorical variables?
5OpBon 1: Encode them as binary variables (a common pracBce)
5OpBon 2: Modeling and reasoning over categorical variables
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Discrete BO: Technical Challenges

h Effective modeling over combinatorial structures (e.g., sequences, graphs)

h Solving hard combinatorial optimization problem to select next structure
5 Not an issue if we are searching over a fixed database of structures

StaAsAcal model M Acquisition function 
optimization (AFO)

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive funcAon evaluaAon
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Discrete BO: Summary of Approaches

hTrade-off complexity of model and tractability of AFO

hSimple statistical models and tractable search for AFO
5BOCS [Baptista et al., 2018]

hComplex statistical models and heuristic search for AFO
5SMAC [Hutter et al., 2011] and COMBO [Oh et al., 2019]

hComplex statistical models and tractable/accurate AFO
5L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021] 

5Reduction to continuous BO [Gómez-Bombarelli et al., 2018]…
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Aside: Discrete BO vs. Structured Predic>on

hStructured prediction (SP) [Lafferty et al., 2001] [Bakir et al., 2007]

5Generalization of classification to structured outputs (e.g., 
sequences, trees, and graphs)

5CRFs, Structured Perceptron, Structured SVM

hComplexity of cost function vs. tractability of inference

5Simple cost functions (e.g., first-order) and tractable inference
5Complex cost functions (e.g., higher-order) and heuristic inference
5Learning to search for SP [Daume’ et al., 2009] [Doppa et al., 2014] 

Key Difference: 

Small data vs. big data setting
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Surrogate Models: BOCS [Bap7sta et al., 2018]

hLinear surrogate model over binary structures
5𝑓 𝑥 ∈ 𝑋 = 𝜃K. 𝜙(𝑥)
5𝜙(𝑥) consists of up to Quadratic (second-order) terms
5𝜙 𝑥 = [𝑥1, 𝑥2, … , 𝑥/, 𝑥1. 𝑥2, 𝑥1. 𝑥S, … , 𝑥/:1. 𝑥/]

May not be sufficient 
to capture desired 

dependencies
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Surrogate Models:  SMAC [Hutter et al., 2010, 2011]

hRandom forest as surrogate model
5works naturally for categorical and mixed variables
5PredicBon/Uncertainty (= empirical mean/variance over trees)

h Improvements for be\er uncertainty es?mates
5Bagging with oversampling [Kim and Choi, 2022]

Uncertainty estimates 
can be poor
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Surrogate Models: COMBO [Oh et al., 2019]

hGP with diffusion kernel [Kondor and Lafferty 2002]

5Requires a graph representaBon of the input space 𝑋

𝐾 𝑉, 𝑉 = 𝑒𝑥𝑝(−𝛽𝐿 𝐺 )

hCombinatorial graph representa0on [Oh et al., 2019]

𝐺

Each vertex is a 
candidate structure 𝑥

∈ 𝑋
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Surrogate Models: COMBO [Oh et al., 2019]

hGP with diffusion kernel [Kondor and Lafferty 2002]

5Requires a graph representaBon of the input space 𝑋

𝐾 𝑉, 𝑉 = 𝑒𝑥𝑝(−𝛽𝐿 𝐺 )

hCombinatorial graph representa0on [Oh et al., 2019]

𝐺
⊡ ⊡𝐺1 𝐺2 𝐺S
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Surrogate Models: GP via Structured Kernels

hLeverage prior work on kernels over structured data 
[Gartner, 2003] to build GP surrogate models

hSome examples from BO literatures

5String kernels [Moss et al., 2020]

5Kernels for protein design  [Gruver et al., 2021]

5PermutaBon kernels [Deshwal et al., 2022; Oh et al., 2021]

5Weisfeiler-Lehman kernels for NAS [Ru et al., 2021]
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Acquisition Functions

hCan use acquisi?on func?ons that don’t require 
sampling from the posterior model
5EI and UCB

hMany advanced acquisi?on func?ons require sampling 
func?ons from posterior
5Thompson sampling
5PredicBve entropy search
5Max-value entropy search
5…
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Acquisi>on Func>on: Mercer Features [Deshwal et al., 2021]

hMercer features allow sampling functions from GP posterior

hMissing puzzle to leverage prior acquisition functions
5Thompson Sampling (TS)
5Predictive Entropy Search (PES)
5Max-value Entropy Search (MES)
5…

BO for con7nuous 
spaces

BO for discrete 
spaces
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Acquisi>on Func>on: Mercer Features [Deshwal et al., 2021]

hCOMBO surrogate model: GP with discrete diffusion kernel 
and graph representa?on 𝐺

hKey Idea: exploit the structure of combinatorial graph 𝐺 to 
compute its eigenspace in closed-form

hEigenvalue set: {0, 2, … , 2𝑛}
5𝑗R[ eigenvalue occurs with Y

\ mulBplicity

hEigenvector set: Hadamard matrix (𝐻) of order 2C

𝐻!" = (−1) #!,#"
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Acquisi>on Func>on: Mercer Features [Deshwal et al., 2021]

𝑲 𝒙𝟏, 𝒙𝟐 = i
𝒊_𝟎

𝟐𝒏:𝟏

𝒆:𝜷𝝀𝒊 −𝟏c𝒓𝒊, 𝒙𝟏f −𝟏c𝒓𝒊, 𝒙𝟐f

𝑲 𝒙𝟏, 𝒙𝟐 = 𝝓 𝒙𝟏 𝑻𝝓(𝒙𝟐)

𝑗%& order Mercer features: first 𝑗 distinct eigenvalues 

𝜙 𝑥 Z = { 𝒆:𝜷𝝀𝒊 −𝟏c𝒓𝒊, 𝒙f}
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Acquisi>on Func>on Op>miza>on (AFO)

hTractable search for AFO via Thompson sampling
5BOCS [BapAsta et al., 2018]

5MerCBO [Deshwal et al., 2021]

5Neural network + MILP [Papalexopoulos et al., 2022]

hHeuris?c search (local search with restarts) for AFO
5SMAC [Hu_er et al., 2011] and COMBO [Oh et al., 2019]

hLearning-to-search framework for AFO [Deshwal et al., 2020]

Use machine learning to 
improve accuracy of search
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Discrete BO: Experimental Results #1
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Discrete BO: Experimental Results #2
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Reduc>on to Con>nuous BO [Gómez-Bombarelli et al., 2018]…

hKey Idea: Convert discrete space into continuous space

hTrain a deep generative model (VAE) using unsupervised 
structures

hPerform BO in the learned continuous latent space
5Surrogate modeling and acquisition function optimization in 

latent space (vs. combinatorial space)
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Reduc>on to Con>nuous BO [Gómez-Bombarelli et al., 2018]…

hBO in the learned latent space
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Reduc>on to Con>nuous BO [Gómez-Bombarelli et al., 2018]…

hBO in the learned latent space
Decoded structure 
may not be valid

Griffiths R.-R. and Hernández-Lobato J. M.: Constrained Bayesian opAmizaAon for 
AutomaAc Chemical Design Using VariaAonal Autoencoders, Chemical Science, 2019
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Reduc>on to Con>nuous BO [Gómez-Bombarelli et al., 2018]…

hBO in the learned latent space

hChallenges
o Doesn’t (explicitly) incorporate information about decoded structures
o Surrogate model may not generalize well for small data setting
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Improvements to Latent Space BO

hWeighted retraining [Tripp et al., 2020]

5Periodically retrain the deep generative model
5Assign importance weights to training data proportional to 

their objective function value

hUncertainty-guided latent space BO [Notin et al., 2021]

5Leverage the epistemic uncertainty of the decoder to guide 
the optimization process

5No retraining of deep generative model is needed
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Improvements to Latent Space BO

hLADDER algorithm [Deshwal and Doppa, 2021]

5 Incorporate domain knowledge via (hand-designed) structured 
kernels

• Key Idea
o Extrapolate eigenfuncBons of the latent space kernel matrix L

with basis funcBons from the structured kernel 𝑘
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Improvements to Latent Space BO

hLOL-BO [Maus et al., 2022]

5 Idea 1: train GP and VAE jointly
5 Idea 2: adapt high-dimensional BO methods in conBnuous spaces



AAAI-2023 Tutorial on Recent Advances in Bayesian Optimization 74

Latent Space BO: Experimental Results
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisition functions, and BoTorch demo 

hBayesian Optimization over Discrete/Hybrid Spaces

hMulti-fidelity Bayesian Optimization

hHigh-Dimensional BO and BoTorch Hands-on demo

hMulti-Objective BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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BO Over Hybrid Spaces: The Problem

hGoal: find op'mized hybrid structures via expensive 
experiments
5 𝑥 = mixture of 𝑥/ (discrete) and 𝑥0 (conBnuous) variables 

hMany other science, engineering, industrial applica?ons
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Hybrid BO: Technical Challenges

h Effective modeling over hybrid structures (capture complex interactions 
among discrete and continuous variables)

h Solving hard optimization problem over hybrid spaces for AFO

StaAsAcal model M AcquisiAon funcAon 
opAmizaAon (AFO)

𝑥!"#$ = 𝑎𝑟𝑔max
#∈&

𝐴𝐹(𝑀, 𝑥)

𝑥!"#$𝑓(𝑥!"#$)

Expensive funcAon evaluaAon



AAAI-2023 Tutorial on Recent Advances in Bayesian OpAmizaAon 78

Surrogate Models: MiVaBO [Daxberger et al., 2019]

hLinear surrogate model over binary structures
5𝑓 𝑥 ∈ 𝑋 = 𝜃K. 𝜙(𝑥)
5𝜙(𝑥) consists of conBnuous (random Fourier features), 

discrete (BOCS representaBon for binary variables), and mixed 
(products of all pairwise combinaBons) features

May not be sufficient to 
capture desired dependencies
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Surrogate Models:  SMAC [Hutter et al., 2010, 2011]

hRandom forest as surrogate model
5works naturally for categorical and mixed variables
5PredicBon/Uncertainty (= empirical mean/variance over trees)

h Improvements for be\er uncertainty es?mates
5Bagging with oversampling [Kim and Choi, 2022]

Uncertainty estimates 
can be poor
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Surrogate Models: GP with Sum-and-Product Kernels 
[Ru et al., 2021; Wan et al., 2021]

𝑘 𝑧, 𝑧) = 1 − 𝜆 ∗ (𝑘E 𝑥E , 𝑥E) + 𝑘F 𝑥F , 𝑥F) )
+ 𝜆 ∗ 𝑘E 𝑥E , 𝑥E) 𝑘F 𝑥F , 𝑥F)

Sum

Product

hCoCaBO [Ru et al., 2021]

5𝑘/ 𝑥/, 𝑥/8 = ∑(𝑥/Z== 𝑥/Z ) // Hamming similarity
5𝑘0 is Matern Kernel

hCasmopolitan [Wan et al., 2021]

5𝑘/ 𝑥/, 𝑥/8 = exp(∑ 𝑙Z(𝑥/Z== 𝑥/Z ))  // exponenBated Hamming
5𝑘0 is Matern Kernel
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Surrogate Models: 
GP w/ Diffusion Kernels [Deshwal et al., 2021]

hGP surrogate model with addi?ve diffusion kernels

5Exploits the general recipe of addiBve kernels [Duvenaud et al., 2011]

5 InstanBaBon w/ discrete & conBnuous diffusion kernels
5Bayesian treatment of the hyper-parameters
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Surrogate Models: 
GP w/ Frequency Modula>on Kernels [Oh et al., 2021]

hKey idea: Generalize the COMBO kernel [Oh et al., 2019] by 
parametrizing via a function of continuous variables

hRequirement on 𝑓 for K to be a positive definite kernel
5𝑓 should be positive definite w.r.t 𝑋0, 𝑋08

K = 𝑒𝑥𝑝(−𝛽𝐿 𝐺 )

Remember the 
COMBO kernelK = 𝑈K𝑒𝑥𝑝 −𝛽Σ 𝑈

K = 𝑈K𝑓(Σ, 𝑋0, 𝑋08)𝑈
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Acquisi>on Func>ons

hThompson Sampling 
5MiVaBO: linear surrogate model 𝑓 𝑥 ∈ 𝑋 = 𝜃K. 𝜙(𝑥)

hExpected Improvement
5SMAC: random forest model
5HyBO: GP with hybrid diffusion kernel
5BO-FM: GP with frequency modulated kernel
5CoCaBO: GP with sum and product kernel over subspaces
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Acquisition Function Optimization

hMiVaBO, HyBO, BO-FM: Alterna?ng search
5Step 1: Search over conBnuous sub-space 
5Step 2: Search over discrete sub-space using output of Step #1 
5Repeat if needed

hSMAC
5Hand-designed local search with restarts 

hCoCaBO
5ConBnuous variables via gradient-based search
5Categorical variables via mulB-armed bandit algorithms

hCasmopolitan
5Trust region-based AFO to scale to high-dimensional spaces
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Hybrid BO: Experimental Results #1

h HyBO performs significantly beGer than prior methods
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Hybrid BO: Experimental Results #2

h HyBO’s better BO performance is due to better surrogate model
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisition functions, and BoTorch demo 

hBayesian Optimization over Discrete/Hybrid Spaces

hMulti-fidelity Bayesian Optimization

hHigh-Dimensional BO and BoTorch Hands-on demo

hMulti-Objective BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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Applica>on #1: Auto ML and 
Hyperparameter Tuning

𝑒𝑝𝑜𝑐ℎ𝑠 𝑒𝑝𝑜𝑐ℎ𝑠

Cost vs. Accuracy trade-offs in 
evaluaBng hyperparameter 

configuraBons
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Applica>on #2: Hardware Design via 
Simula>ons

𝑇𝑜𝑙𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑜𝑙𝑒𝑟𝑒𝑛𝑐𝑒

Cost vs. Accuracy trade-offs in 
evaluaBng hardware designs
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Mul>-Fidelity BO: The Problem

hCost vs. accuracy trade-offs for function approximations

hContinuous-fidelity is the most general case
5Discrete-fidelity is a special case

hGoal: Optimize the highest-fidelity function by 
minimizing the resource cost of experiments

Discrete fidelity Continuous fidelity

!(# )!(!) …   !(% ) …

Cost

' ", (
' ", (∗ = * (")

C
os
t

*
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Mul>-Fidelity BO: Key Challenges

h Intuition: use cheap (low-fidelity) experiments to gain 
information and prune the input space; and use costly 
(high-fidelity) experiments on promising candidates

hModeling challenge: How to model multi-fidelity 
functions to allow information sharing?

hReasoning challenge: 
5How to select the input design and fidelity pair in 

each BO iteration?
5 How to progressively select higher fidelity 

experiments?
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Multi-Fidelity GPs for Modeling

hDesiderata: model rela?onship/informa?on sharing 
between different fideli?es

hSolu?on: mul?-output GPs with vector-valued kernels
5Provides a predicBon 𝜇 and uncertainty 𝜎 for each input and 

fidelity pair

𝑘 : 𝜒 × 𝑍 Q → ℝ
𝑘 𝑥, 𝑧 , 𝑥), 𝑧′ = 𝑘R 𝑥, 𝑥) 𝑘S(𝑧, 𝑧′)

𝜇T 𝑥 = 𝜇U 𝑥, 𝑧∗ and 𝜎T 𝑥 = 𝜎U(𝑥, 𝑧∗)
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EI Extension for Mul>-Fidelity BO

hMulti-fidelity expected improvement (MF-EI)
5Extension of EI for multi-fidelity setting
5Applicable for discrete-fidelity setting

hAcquisition function optimization
g Enumerate each fidelity 𝑧 and find the best 𝑥 while fixing 𝑧

𝐸𝐼 𝑥, 𝑧 = 𝐸 max 𝜏 − 𝑦V∗ 𝑐𝑜𝑣 𝑦V , 𝑦V∗ 𝐶V∗/𝐶V
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Informa>on-Theore>c Extensions 
for Mul>-Fidelity BO

𝐴𝐹 𝑥 = 𝐻 𝛼 𝐷) − 𝐸*[𝐻 𝛼 𝐷 ∪ 𝑥, 𝑦 )]
= Information Gain(𝛼; 𝑦)

hDesign choices of 𝛼 leads to different algorithms

h𝛼 as input loca?on of op?ma 𝑥∗
5Entropy Search (ES) / PredicBve Entropy Search (PES)
5 IntuiBve but requires expensive approximaBons

h𝛼 as output value of op?ma 𝑦∗
5Max-value Entropy Search (MES) and it’s variants
5ComputaBonally cheaper and more robust
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Informa>on-Theore>c Extensions 
for Mul>-Fidelity BO

𝐴𝐹 𝑥, 𝑧 = [𝐻 𝛼 𝐷) − 𝐸L[𝐻 𝛼 𝐷 ∪ 𝑥, 𝑧, 𝑦 )]]/𝐶(𝑥, 𝑧)
= Information Gain per Unit Cost(𝛼; 𝑦)

hDesign choices of 𝛼 leads to different algorithms

h𝛼 as input loca?on of op?ma 𝑥∗
5MF-PredicBve Entropy Search (MF-PES)
5 IntuiBve but requires expensive approximaBons

h𝛼 as output value of op?ma 𝑦∗
5MF Max-value Entropy Search (MF-MES) 
5ComputaBonally cheaper and more robust
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Con>nuous-Fidelity BO: BOCA Algorithm

hTwo step procedure to select input 𝑥 and fidelity 𝑧
separately

hSelection of input 𝒙
5Optimize the AF with respect to highest fidelity 

UCB(x, 𝑧∗)= 𝑦V∗(𝑥) + 𝛽 𝜎V∗(𝑥)

hSelection of fidelity 𝒛
5Reducing fidelity space: 

𝑍] = {𝑧: 𝜎V 𝑥^_] ≥ 𝛾 𝑧 , 𝜉 𝑧 > 𝛽 ∥ 𝜉 ∥`} ∪ 𝑧∗

Select higher fidelities 

Avoid close neighborhood 
of the highest fidelity
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Mul>-Fidelity BO for HPO: taKG Algorithm

hTrace aware Knowledge Gradient for Hyperparameter 
optimization:
5Use exponential decay kernel for fidelity space

5 Select the input and fidelity 𝑥, 𝑧 maximizing:

𝑡𝑎𝐾𝐺 𝑥, 𝑧 = a ∅ ca(",V)
d(",V)

=
minh*𝔼 g x

8, z∗ − 𝔼[minh*𝔼 g x
8, z∗ |𝑦(𝑥, 𝑧)

𝐶(𝑥, 𝑧)
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Code and Software

hMul?-fidelity modeling
5 hGps://mlatcl.github.io/mlphysical/lectures/05-02-

mulBfidelity.html

hBOTorch
5hGps://botorch.org/tutorials/discrete_mulB_fidelity_bo

https://mlatcl.github.io/mlphysical/lectures/05-02-multifidelity.html
https://botorch.org/tutorials/discrete_multi_fidelity_bo
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisition functions, and BoTorch demo 

hBayesian Optimization over Discrete/Hybrid Spaces

hMulti-fidelity Bayesian Optimization

hHigh-Dimensional BO and BoTorch Hands-on demo

hMulti-Objective BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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High-Dimensional Bayesian 
Optimization

Slides credit: Jake Gardner @ University of Pennsylvania
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Dimensionality is a Key Challenge

Problem: covering a high dimensional

search space takes exponentially many

evaluations!
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Dimensionality is a Key Challenge
Example

Encoder Decoder

Input 𝑥

Latent 𝑧

Reconstruction z𝑥

(Unsupervised)
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Dimensionality is a Key Challenge
Example

Encoder Decoder

Input 𝑥

Latent 𝑧

Reconstruction z𝑥

Train GP 𝑝(𝑦 ∣ 𝑧, 𝒟)

(Unsupervised)

(Supervised)
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Dimensionality is a Key Challenge
Example

Encoder Decoder

Input 𝑥

Latent 𝑧

Reconstruction z𝑥

Train GP 𝑝(𝑦 ∣ 𝑧, 𝒟)

(Unsupervised)

(Supervised)Typical: up to 256 dimensions
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Approaches to High Dimensional BO
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Approaches to High Dimensional BO

1. Additive Structure

(bayesoptbook.com)

𝑓 𝑥 = 𝑔1 𝑥1 + 𝑔2(𝑥2)
(Kandasamy et al., 2015; Wang 

et al., 2017; Gardner et al., 
2017; Rolland et al., 2018; Mutný

et al., 2018)
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Approaches to High Dimensional BO

1. Additive Structure

(bayesoptbook.com)

2. Linear Embeddings 𝑓 𝑥 = 𝑔(𝐴𝑥)
𝑔:ℝ/ → ℝ

𝑓 𝑥 = 𝑔1 𝑥1 + 𝑔2(𝑥2)
(Kandasamy et al., 2015; Wang 

et al., 2017; Gardner et al., 
2017; Rolland et al., 2018; Mutný

et al., 2018)
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Approaches to High Dimensional BO

1. Additive Structure

(bayesoptbook.com)

2. Linear Embeddings 𝑓 𝑥 = 𝑔(𝐴𝑥)
𝑔:ℝ/ → ℝ

𝑓 𝑥 = 𝑔1 𝑥1 + 𝑔2(𝑥2)

3. Local BayesOpt

(Kandasamy et al., 2015; Wang 
et al., 2017; Gardner et al., 

2017; Rolland et al., 2018; Mutný
et al., 2018)

“Any optimum will do”
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Approaches to High Dimensional BO

1. Additive Structure

(bayesoptbook.com)

2. Linear Embeddings 𝑓 𝑥 = 𝑔(𝐴𝑥)
𝑔:ℝ/ → ℝ

𝑓 𝑥 = 𝑔1 𝑥1 + 𝑔2(𝑥2)

3. Local BayesOpt

(Kandasamy et al., 2015; Wang 
et al., 2017; Gardner et al., 

2017; Rolland et al., 2018; Mutný
et al., 2018)

“Any optimum will do”
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High Dimensional BO via Linear 
Embeddings
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High Dimensional BO: Linear Embeddings
𝑓(𝒙)

𝑥1 𝑥2
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High Dimensional BO: Linear Embeddings

𝑥1 𝑥2

𝑓(𝒙)
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High Dimensional BO: Linear Embeddings

𝑥1 𝑥2

𝑓(𝒙)

Assumes:
𝑓(𝑥) = 𝑔(𝐴𝑥)

𝐴 ∈ ℝ!×# x
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High Dimensional BO: Linear Embeddings

𝑥1 𝑥2

𝑓(𝒙)

When D=2, d=1, 

“how far along 

the vector” to move

Wang et al., 2014 (REMBO): Random 𝐴

𝐴 ∈ ℝ!×# x
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High Dimensional BO: Linear Embeddings

𝑥1 𝑥2

𝑓(𝒙)Wang et al., 2014 (REMBO): Random 𝐴

𝐴 ∈ ℝ!×# x
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High Dimensional BO: Linear Embeddings
Wang et al., 2014 (REMBO): Random 𝐴

Letham et al., 2020 (ALEBO): Use projection pseudo-inverse to avoid bound clipping via 
constrained acquisition maximization, introduce pseudo inverse into Mahalanobis metric in 
kernel

(Figure 1, Letham et al., 2020)
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High Dimensional BO: Linear Embeddings
Wang et al., 2014 (REMBO): Random 𝐴

Letham et al., 2020 (ALEBO): Use projection pseudo-inverse to avoid bound clipping via 
constrained acquisition maximization, introduce pseudo inverse into Mahalanobis metric in 
kernel

Binois et al., 2020: The original space bounds clipping problem is not trivially solved by 
heuristic bounds in the embedding.

Munteanu et al., 2019 (HeSBO): Avoids bounds clipping via their embedding method.

(Figure 1, Letham et al., 2020)
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High Dimensional BO: Local BOTR Center(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

TR Length

TR Center(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

TR Length

TR Center
(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

TR Length

TR Center

Op #1: Grow the TR

(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

TR Length

TR Center

Op #1: Grow the TR Op #2: Shrink the TR

(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

TR Length

TR Center

Op #1: Grow the TR Op #2: Shrink the TR

(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BOTR Center

Op #1: Grow the TR Op #2: Shrink the TR

TR Length

Op #3: Move the TR

(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BOTR Center

Op #1: Grow the TR Op #2: Shrink the TR

TR Length

Op #3: Move the TR

(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

Op #1: Grow the TR Op #2: Shrink the TR Op #3: Move the TR

(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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High Dimensional BO: Local BO

Op #1: Grow the TR Op #2: Shrink the TR Op #3: Move the TR

Consider bandit / 
MCTS over multiple 

TRs(e.g. Eriksson et al., 2019, Wang et al., 2020)

Idea: Perform BO inside a trust region (TuRBO)
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GPyTorch + BoTorch Demo: TuRBO + LS-BO
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VAE Turns real vectors into molecules:

Decode from PyTorch VAE Model

1. Handling the “LS” bit.
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO

VAE Turns real vectors into molecules:

Decode from PyTorch VAE Model

1. Handling the “LS” bit.

Brown et al., 2019

Take away: The “LS” part is pretty much done for you. If that’s what you want.
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2. Train a surrogate model
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Inducing points 
initialized using 

Pivoted Cholesky 
(Burt et al., 2020)Pre-baked BoTorch model:

2. Train a surrogate model
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

Pre-baked BoTorch model:

Inducing points 
initialized using 

Pivoted Cholesky 
(Burt et al., 2020)

Training:

(Soon: https://github.com/pytorch/botorch/pull/1439/)

2. Train a surrogate model

https://github.com/pytorch/botorch/pull/1439/
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

TR Length

3. Trust region state
2. Train a surrogate model
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

TR Length

TR length ∈ [0, 1]

3. Trust region state
2. Train a surrogate model

(× some fixed init. Length)
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

TR Length

Shrink TR if we fail to 
make progress 5 
times in a row. 

3. Trust region state
2. Train a surrogate model
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

TR Length

Grow TR if we make 
progress 5 times in a 

row. 

3. Trust region state
2. Train a surrogate model
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

TR Length

Grow TR if we make 
progress 5 times in a 

row. 

3. Trust region state
2. Train a surrogate model
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3. Trust region state
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2. Train a surrogate model
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BO 1. Handling the “LS” bit.

3. Trust region state
4. Maximize an acquisition function

2. Train a surrogate model

Monte-Carlo 
Acquisition functions 
(Wilson et al., 2018)
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

3. Trust region state
4. Maximize an acquisition function

2. Train a surrogate model

Monte-Carlo 
Acquisition functions 
(Wilson et al., 2018)

Batch size = 10
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

3. Trust region state
4. Maximize an acquisition function

2. Train a surrogate model

Run local 
optimization from 10 
initial conditions.

ICs chosen from 
among 512 Sobol
samples.
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

3. Trust region state
4. Maximize an acquisition function

2. Train a surrogate model
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

3. Trust region state
4. Maximize an acquisition function

2. Train a surrogate model

TR Length
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GPyTorch + BoTorch Demo: TuRBO + LS-
BO 1. Handling the “LS” bit.

3. Trust region state
4. Maximize an acquisition function

2. Train a surrogate model

4. Update state
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Results

log 𝑃: ~140 in 200-300 steps.
Guacamol:
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BODi: High-dimensional Combinatorial 
BO via Dic+onary-based Embeddings

153

Deshwal et al., Bayesian Op3miza3on over High-Dimensional Combinatorial 
Spaces via Dic3onary based Randomized Con3nuous Embeddings, AISTATS-2023.
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BODi: High-dimensional Combinatorial 
BO via Dic+onary-based Embeddings

h𝜒 ∈ 0, 1 E where d is large 

hKey Idea
5Embed inputs into low-dimensional embedding using a 

dicBonary of combinatorial structures from 𝜒
5Allows us to use standard GP surrogate models with conBnuous 

kernels in the embedded space

hDic?onary construc?on by maximizing diversity
g Wavelet based design for binary spaces
g Randomized approach for categorical spaces

154
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BODi: Experimental Results

155

LABS: 60 dim binary space Joint feature selec=on and 
hyper-parameter 

op=miza=on for SVM training

50 dim binary x 3 dim 
con7nuous space

BODi consistently outperforms all state-of-the-art baselines
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisi?on func?ons, and BoTorch demo 

hBayesian Op?miza?on over Discrete/Hybrid Spaces

hMul?-fidelity Bayesian Op?miza?on

hHigh-Dimensional BO and BoTorch Hands-on demo

hMul?-Objec?ve BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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Mul1-Objec1ve 
Bayesian Op1miza1on 
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Application #1: Drug/Vaccine Design

Ø Accelerate the discovery of promising designs 

Credit: MIMA healthcare

Effectiveness

Safety

Cost



AAAI-2023 Tutorial on Recent Advances in Bayesian OpAmizaAon 159

Application #2: Hardware Design for Datacenters

America’s Data Centers Are WasAng Huge 
Amounts of Energy

By 2020, data centers are projected to consume roughly 140 
billion kilowa=-hours annually, cos?ng American businesses 
$13 billion annually in electricity bills and emiCng nearly 150 
million metric tons of carbon pollu?on

Report from Natural Resources Defense Council:. 
h7ps://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

High-performance and Energy-
efficient manycore chips

Performance

Reliability

Power
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Multi-Objective Optimization: The Problem 

Ø Goal: Find designs with op?mal trade-offs by minimizing 
the total resource cost of experiments
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Multi-Objective Optimization: Key Challenge 

hChallenge: Optimize multiple conflicting objective 
functions
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Mul>-Objec>ve Op>miza>on: The Solu>on

hSet of input designs with optimal trade-offs called the 
optimal Pareto set  𝜒∗

h Corresponding set of function values called optimal 
pareto front Pareto front  𝑌∗

h Pareto hypervolume 
measures the quality of 
a Pareto front
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Single => Multi-Objective BO

hChallenge #1: Statistical modeling
5 Typically, one GP model for each objective function (tractability)

hChallenge #2: Acquisition function design
5 Capture the trade-off between multiple objectives
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Mul>-Objec>ve BO: Summary of Approaches

hReduction to single-objective via scalarization
5ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

hHypervolume improvement 
5EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021]

hWrapper methods via single-objective acquisition functions
5USeMO [Belakaria et al., 2020], DGEMO [Lukovic et al. 2020] 

h Information-theoretic methods
5𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] , JES [Tu et al., 2022] 
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Mul>-Objec>ve BO: Summary of Approaches

hReduction to single-objective via scalarization
5ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

hHypervolume improvement 
5EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021]

hWrapper methods via single-objective acquisition functions
5USeMO [Belakaria et al., 2020], DGEMO [Lukovic et al. 2020] 

h Information-theoretic methods
5𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] , JES [Tu et al., 2022] 
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Reduc>on via Random Scalariza>on

hReduce the problem to single objec?ve op?miza?on

hParEGO [Knowles et al., 2006]

5BO over scalarized objecBve funcBon using EI

𝑓 𝑥 = i
Z_1

Q

𝜆Z. 𝑓Z (𝑥)

5Scalar weights are sampled from a uniform distribuBon

hMOBO-RS [Paria et al., 2019]

5OpBmize scalarized objecBve funcBon over a set of scalar 
weight-vectors using a prior specified by the user
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Reduc>on via Random Scalariza>on

hReduce the problem to single objec?ve op?miza?on

hParEGO [Knowles et al., 2006]

5BO over scalarized objecBve funcBon using EI

𝑓 𝑥 = i
Z_1

Q

𝜆Z. 𝑓Z (𝑥)

5Scalar weights are sampled from a uniform distribuBon

hMOBO-RS [Paria et al., 2019]

5OpBmize scalarized objecBve funcBon over a set of scalar 
weight-vectors using a prior specified by the user

Hard to define the scalars or specify priors over 
scalars, which can lead to sub-optimal results
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Mul>-Objec>ve BO: Summary of Approaches

hReduc?on to single-objec?ve via scalariza?on
5ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

hHypervolume improvement 
5EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021]

hWrapper methods via single-objec?ve acquisi?on func?ons
5USeMO [Belakaria et al., 2020], DGEMO [Lukovic et al. 2020] 

h Informa?on-theore?c methods
5𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019], JES [Tu et al., 2022] 
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Hypervolume Improvement Approaches

hEHI: Expected improvement in PHV [Emmerich et al., 2008] 

hSUR: Probability of improvement in PHV [Picheny et al., 2015] 

hSMSego [Ponweiser et al., 2008] 

5 Improves the scalability of PHV computaBon by automaBcally 
reducing the search space

hqEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021]

5DifferenBable hypervolume improvement
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qEHVI Algorithm [Daulton et al., 2020]

hParallel EHVI via the Inclusion-Exclusion Principle

5PracBcal since q is usually small
5ComputaBon of all intersecBons be parallelized 
5This formulaBon simplifies computaBon of overlapping 

hypervolumes
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qEHVI Algorithm [Daulton et al., 2020] 

hDifferen?able Hypervolume Improvement
5Sample path gradients via the reparameterizaBon trick
5Unbiased gradient esBmator

5q can be selected via joint opBmizaBon (dq) or via a sequenBal 
greedy approximaBon 

5SequenBal greedy approximaBon enjoys a regret of no more 
than 

𝔼[𝛻𝒙𝛼
̂
#$%&'(𝒙)] = 𝛻𝒙𝛼#$%&'(𝒙)

1
𝑒
𝛼∗/0123
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Experimental Results for qEHVI [Daulton et al., 2020] 

Vehicle Crash Safety Branin-Currin
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hSequential Greedy Optimization

hqNEHVI Algorithm [Daulton et al., 2021]: Extension to 
the Noisy setting 

qEHVI Algorithm [Daulton et al., 2020] 
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Hypervolume Improvement Approaches

hEHI: Expected improvement in PHV [Emmerich et al., 2008] 

hSUR: Probability of improvement in PHV [Picheny et al., 2015] 

hSMSego [Ponweiser et al., 2008] 

5 Improves the scalability of PHV computation by automatically 
reducing the search space

hqEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021]

5Differentiable hypervolume improvement

Can poten7ally lead to more 
exploita7on behavior resul7ng in sub-

op7mal solu7ons
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Multi-Objective BO: Summary of Approaches

hReduction to single-objective via scalarization
5ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

hHypervolume improvement 
5EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021] 

hWrapper methods via single-objective acquisition functions
5USeMO [Belakaria et al., 2020], DGEMO [Lukovic et al. 2020]

h Information-theoretic methods
5𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019] , JES [Tu et al., 2022] 
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USeMO Framework [Belakaria et al., 2020] 
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USeMO Framework [Belakaria et al., 2020] 

h Allows us to leverage acquisi7on func7ons from single-objec7ve BO to solve 
mul7-objec7ve BO problems
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USeMO Framework [Belakaria et al., 2020] 

h Allows us to leverage acquisi7on func7ons from single-objec7ve BO to solve 
mul7-objec7ve BO problems

How to (automa7cally) select AF 
configura7ons to create effec7ve 

MOBO algorithms?
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Mul>-Objec>ve BO: Summary of Approaches

hReduc?on to single-objec?ve via scalariza?on
5ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019] 

hHypervolume improvement 
5EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al., 

2008] , qEHVI [Daulton et al., 2020], qNEHVI [Daulton et al., 2021] 

hWrapper methods via single-objec?ve acquisi?on func?ons
5USeMO [Belakaria et al., 2020], DGEMO [Lukovic et al. 2020] 

h Informa?on-theore?c methods
5𝜖-PAL [Zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO 

[Belakaria et al., 2019], JES [Tu et al., 2022] 
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𝜖-PAL Algorithm [Zuluaga et al., 2013]

hClassifies candidate inputs into three categories using 
the learned GP models
5Pareto-opBmal
5Not Pareto-opBmal
5Uncertain

h In each itera?on, selects the candidate input for 
evalua?on to minimize the size of uncertain set

hAccuracy of pruning depends cri?cally on 𝜖 value
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𝜖-PAL Algorithm [Zuluaga et al., 2013]

hClassifies candidate inputs into three categories using 
the learned GP models
5Pareto-opBmal
5Not Pareto-opBmal
5Uncertain

h In each itera?on, selects the candidate input for 
evalua?on to minimize the size of uncertain set

hAccuracy of pruning depends cri?cally on 𝜖 value

Limited applicability as it 
works only for discrete set of 

candidate inputs 
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

hKey Idea: select the input that maximizes the 
informa?on gain about the op?mal Pareto set 𝜒∗

hReminder: Set of input designs with op?mal trade-offs 
is called the op?mal Pareto set  𝜒∗
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

hKey Idea: select the input that maximizes the 
informa?on gain about the op?mal Pareto set 𝜒∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝜒∗ 𝐷)
= 𝐻 𝜒∗ 𝐷) − 𝔼W[𝐻 𝜒∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼X∗[𝐻 𝑦 𝐷, 𝑥, 𝜒∗)]
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

hKey Idea: select the input that maximizes the 
informa?on gain about the op?mal Pareto set 𝜒∗

Equivalent to expected 
reducBon  in entropy over 

the pareto set 𝜒∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝜒∗ 𝐷)
= 𝐻 𝜒∗ 𝐷) − 𝔼W[𝐻 𝜒∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼X∗[𝐻 𝑦 𝐷, 𝑥, 𝜒∗)]
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

hKey Idea: select the input that maximizes the 
information gain about the optimal Pareto set 𝜒∗

Due to symmetric property 
of information gain

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝜒∗ 𝐷)
= 𝐻 𝜒∗ 𝐷) − 𝔼W[𝐻 𝜒∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼X∗[𝐻 𝑦 𝐷, 𝑥, 𝜒∗)]
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

hKey Idea: select the input that maximizes the 
informa?on gain about the op?mal Pareto set 𝜒∗

Entropy of factorizable 
Gaussian distribuBon 

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝜒∗ 𝐷)
= 𝐻 𝜒∗ 𝐷) − 𝔼W[𝐻 𝜒∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼X∗[𝐻 𝑦 𝐷, 𝑥, 𝜒∗)]
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

hKey Idea: select the input that maximizes the 
informa?on gain about the op?mal Pareto set 𝜒∗

input dimension d

Requires computationally 
expensive approximation using 

expectation propagation 

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝜒∗ 𝐷)
= 𝐻 𝜒∗ 𝐷) − 𝔼W[𝐻 𝜒∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼X∗[𝐻 𝑦 𝐷, 𝑥, 𝜒∗)]



AAAI-2023 Tutorial on Recent Advances in Bayesian OpAmizaAon 188

MESMO Algorithm [Belakaria et al., 2019]

hKey Idea: select the input that maximizes the informa?on 
gain about the op?mal Pareto front 𝑌∗

hReminder: Set of func?on values corresponding to the 
op?mal Pareto set 𝜒∗is called the op?mal Pareto front 𝑌∗
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MESMO Algorithm [Belakaria et al., 2019]

hKey Idea: select the input that maximizes the informa?on 
gain about the op?mal Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝑌∗ 𝐷)
= 𝐻 𝑌∗ 𝐷) − 𝔼W[𝐻 𝑌∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]
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MESMO Algorithm [Belakaria et al., 2019]

hKey Idea: select the input that maximizes the informa?on 
gain about the op?mal Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝑌∗ 𝐷)
= 𝐻 𝑌∗ 𝐷) − 𝔼W[𝐻 𝑌∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]

Equivalent to expected 
reduction  in entropy over 

the pareto front 𝑌∗
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MESMO Algorithm [Belakaria et al., 2019]

hKey Idea: select the input that maximizes the information 
gain about the optimal Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝑌∗ 𝐷)
= 𝐻 𝑌∗ 𝐷) − 𝔼W[𝐻 𝑌∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]

Due to symmetric property 
of informaBon gain
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MESMO Algorithm [Belakaria et al., 2019]

hKey Idea: select the input that maximizes the informa?on 
gain about the op?mal Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝑌∗ 𝐷)
= 𝐻 𝑌∗ 𝐷) − 𝔼W[𝐻 𝑌∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]

Entropy of factorizable 
Gaussian distribution 
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MESMO Algorithm [Belakaria et al., 2019]

hKey Idea: select the input that maximizes the informa?on 
gain about the op?mal Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , 𝑌∗ 𝐷)
= 𝐻 𝑌∗ 𝐷) − 𝔼W[𝐻 𝑌∗ 𝐷 ∪ {𝑥, 𝑦})]
= 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]

Output dimension k ≪ d

Closed form using properties of  entropy 
and truncated Gaussian distribution 
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MESMO Algorithm [Belakaria et al., 2019]

hThe first term is the entropy of a factorizable 𝑘-dimensional 
Gaussian distribu?on 𝑃 𝑦 𝐷, 𝑥)

𝛼 𝑥 = 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]

𝐻 𝑦 𝐷, 𝑥) = )(+,-.(/0))
/

+ ∑23+4 ln(𝜎2(𝑥))
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MESMO Algorithm [Belakaria et al., 2019]

hWe can approximately compute the second term via 
Monte-Carlo sampling (𝑆 is the number of samples)

𝛼 𝑥 = 𝐻 𝑦 𝐷, 𝑥) − 𝔼Y∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)]

𝔼i∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)] ≈ j
k
∑lmjk 𝐻 𝑦 𝐷, 𝑥, 𝑌l∗)
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MESMO Algorithm [Belakaria et al., 2019]

hApproximate computa?on via Monte-Carlo sampling

hTwo key steps
5 How to compute Pareto front samples 𝑌k∗ ?
5 How to compute the entropy with respect to a given Pareto 

front sample 𝑌k∗?

𝔼i∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)] ≈ j
k
∑lmjk 𝐻 𝑦 𝐷, 𝑥, 𝑌l∗)
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MESMO Algorithm [Belakaria et al., 2019]

hApproximate computa?on via Monte-Carlo sampling

hHow to compute Pareto front samples 𝑌l∗ ?
5Sample funcBons from posterior GPs via random Fourier 

features 
5Solve a cheap MO problem over the sampled funcBons $𝑓1… $𝑓Q

to compute sample Pareto front

𝔼i∗[𝐻 𝑦 𝐷, 𝑥, 𝑌∗)] ≈ j
k
∑lmjk 𝐻 𝑦 𝐷, 𝑥, 𝑌l∗)
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MESMO Algorithm [Belakaria et al., 2019]

hHow to compute the entropy with respect to a given 
Pareto front sample 𝑌l∗?

𝑌k∗= 𝒗𝟏, … , 𝒗𝒍 𝑤𝑖𝑡ℎ 𝒗𝒊 = 𝑣 1Z , … , 𝑣mZ , 
𝑦\≤ 𝑦\1

∗ = max 𝑣 11 , … , 𝑣\n ∀𝑗 ∈ {1,… , 𝐾}

5Decompose the entropy of a set of independent variables into a 
sum of entropies of individual variables

5 Model each component 𝑦\ as a truncated Gaussian distribuBon

𝐻 𝑦 𝐷, 𝑥, 𝑌l∗) ≈ ∑+mjn 𝐻 𝑦+| 𝐷, 𝑥, 𝑦+"
∗
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MESMO Algorithm [Belakaria et al., 2019]

hFinal acquisi?on func?on

𝛼 𝑥 ≈ j
k
∑lmjk ∑+mjn [

o"
# " p o"

# "

Qq o"
# "

− lnΦ 𝛾l
+ 𝑥 ]

Closed form

where 𝛾k
\ 𝑥 =

L21
∗ :o2 N
p2 N

, 𝜙 and Φ are the p.d.f and 

c.d.f of a standard normal distribuBon 
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MESMO Algorithm [Belakaria et al., 2019]
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MOBO Experiments and Results #1

h MESMO is better than PESMO

h MESMO converges faster

h MESMO is robust to the number of samples (even a single sample!)

Compiler Sepngs OpBmizaBonNetwork on Chip Design
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MOBO Experiments and Results #2

h MESMO is highly scalable when compared to PESMO

h MESMO with one sample is comparable to ParEGO

h Time for PESMO and SMSego increases significantly with the number of 
objec7ves
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JES Algorithm [Tu et al., 2022]

hKey Idea: select the input that maximizes the informa?on 
gain about the op?mal Pareto Set 𝜒∗ and Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , {𝜒∗, 𝑌∗} 𝐷)

= 𝐻 𝑦 𝑥, 𝐷) − 𝔼{6∗,8∗}[𝐻 𝑦 𝐷, 𝑥, {𝜒∗, 𝑌∗})]

Entropy of factorizable 
Gaussian distribution 
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JES Algorithm [Tu et al., 2022]

hKey Idea: select the input that maximizes the information 
gain about the optimal Pareto Set 𝜒∗ and Pareto front 𝑌∗

𝛼 𝑥 = 𝐼 𝑥, 𝑦 , {𝜒∗, 𝑌∗} 𝐷)

= 𝐻 𝑦 𝑥, 𝐷) − 𝔼{6∗,8∗}[𝐻 𝑦 𝐷, 𝑥, {𝜒∗, 𝑌∗})]

Entropy of factorizable 
Gaussian distribution 

Approximated by a tractable 
lower-bound expression 
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JES Algorithm [Tu et al., 2022]

hWe can approximately compute the second term via 
Monte-Carlo sampling (𝑆 is the number of samples)

𝛼 𝑥 = 𝐻 𝑦 𝐷, 𝑥) − 𝔼{6∗,8∗}[𝐻 𝑦 𝐷, 𝑥, {𝜒∗, 𝑌∗})]

𝔼{R∗,i∗}[𝐻 𝑦 𝐷, 𝑥, {𝜒∗, 𝑌∗})] ≈ j
k
∑lmjk 𝐻 𝑦 𝐷, 𝑥, {𝜒l∗, 𝑌l∗})

𝛼(𝑥) ≈ j
Q
∑ +mj
n log(𝜎+(𝑥) −

j
Qk
∑lmjk ∑+mjn log(det(𝑣𝑎𝑟(𝑊))

𝑊~ 𝑦|𝑥, 𝐷, 𝑌l∗
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Mul1-Objec1ve Bayesian Op1miza1on 
via

Mul1-Fidelity Func1on Evalua1ons
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Mul>-Fidelity Mul>-Objec>ve BO: The Problem

hCon?nuous-fidelity is the most general case
5Discrete-fidelity is a special case

hGoal: find the approximate (op?mal) Pareto set by 
minimizing the total resource cost of experiments

Discrete fidelity Continuous fidelity
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Mul>-Fidelity Mul>-Objec>ve BO: Key Challenges

hHow to model functions with multiple fidelities?

hHow to jointly select the input design and fidelity-vector 
pair in each BO iteration?

hHow to progressively select higher fidelity experiments?

Challenges: 
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Multi-Fidelity Multi-Objective BO: Key Challenges

hHow to model functions with multiple fidelities?

hHow to jointly select the input design and fidelity-vector 
pair in each BO iteration?

hHow to progressively select higher fidelity experiments?

Already covered

Challenges: 
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iMOCA Algorithm [Belakaria et al., 2021]

hKey Idea: Select the input and fidelity-vector that 
maximizes informa?on gain per unit resource cost about 
the op?mal Pareto front 𝑌∗

where 𝐶 𝒙, 𝒛 = ∑\_1m q 𝒙,r2
q 𝒙,r2

∗ is the normalized cost over different functions

𝛼 𝒙, 𝒛 = 𝐼 𝒙, 𝒚, 𝒛 , 𝑌∗ 𝐷)/𝐶(𝒙, 𝒛)

= (𝐻 𝒚 𝐷, 𝒙, 𝒛) − 𝔼,∗[𝐻 𝒚 𝐷, 𝒙, 𝒛, 𝑌∗)])/𝐶(𝒙, 𝒛)

= (∑-.)/ ln 2𝜋𝑒 𝜎0. 𝒙, 𝑧- − )
1
∑2.)1 ∑-.)/ 𝐻 𝑦-| 𝐷, 𝒙, 𝑧-, 𝑓2

-∗ )/ 𝐶(𝒙, 𝒛)
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iMOCA Algorithm [Belakaria et al., 2021]

hAssumption: Values at lower fidelities are smaller than maximum 
value of the highest fidelity 𝑦\ ≤ 𝑓k

\∗ ∀𝑗 ∈ {1,… , 𝐾}

hTruncated Gaussian approximation (Closed-form)

𝛼 𝒙, 𝒛 ≈ j
d 𝒙,𝒛 k

∑lmjk ∑+mjn [
o"
(%#)p o"

(%#)

Qq o"
(%#)

− lnΦ 𝛾l
(U#) ]

Where 𝛾k
(s2)=

t1
2∗:o42
p42

, 𝝓 and 𝚽 are the p.d.f and c.d.f of a standard 

normal distribuBon
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iMOCA Algorithm [Belakaria et al., 2021]

hChallenges of large (poten?ally infinite) fidelity space
5Select costly fidelity with less accuracy 
5Tendency to select lower fideliBes due to normalizaBon by cost

h iMOCA reduces the fidelity search space using a scheme 
similar to the BOCA algorithm [Kandasamy et al., 2017]
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iMOCA Algorithm [Belakaria et al., 2021]
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iMOCA Experiments and Results 

h iMOCA performs better than all baselines 

h Both variants of iMOCA converge at a much lower cost

h Robust to the number of samples
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iMOCA Experiments and Results

hCost reduc0on factor
5Although the metric gives advantage to baselines, the results in 

the table show a consistently high gain ranging from 52% to 85%
Table 2: Best convergence cost from all baselines CB, Worst convergence cost for iMOCA
C, and cost reduction factor G.

Name BC ARS Circuit Rocket

CB 200 300 115000 9500

C 30 100 55000 2000

G 85% 66.6% 52.1% 78.9%

Cost reduction factor. We also provide the cost reduction factor for experiments with
continuous fidelities, which is the percentage of gain in the convergence cost when compared
to the best performing baseline (the earliest cost for which any of the single-fidelity baselines
converge). Although this metric gives advantage to baselines, the results in Table 2 show a
consistently high gain ranging from 52.1% to 85%.

6. Conclusions

We introduced a novel approach referred as iMOCA to solve multi-objective Bayesian op-
timization problems with continuous function approximations. The key idea is to select
inputs and function approximations for evaluation which maximizes the information gained
per unit cost about the optimal Pareto front. Our experimental results on diverse bench-
marks showed that iMOCA consistently outperforms state-of-the-art single-fidelity methods
and a naive continuous-fidelity MO algorithm.

Acknowledgements. The authors gratefully acknowledge the support from National Sci-
ence Foundation (NSF) grants IIS-1845922 and OAC-1910213. The views expressed are
those of the authors and do not reflect the o�cial policy or position of the NSF.
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SoSware and Code

h PESMO: github.com/HIPS/Spearmint/tree/PESM

h MESMO: github.com/belakaria/MESMO

h USeMO: github.com/belakaria/USeMO

h BoTorch
5 botorch.org/tutorials/mul7_objec7ve_bo
5 hgps://botorch.org/tutorials/informa7on_theore7c_acquisi7on_func7ons

h DGEMO: github.com/yunshengBan/DGEMO

h MF-OSEMO: github.com/belakaria/MF-OSEMO

h iMOCA: github.com/belakaria/iMOCA
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Questions ?
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Outline of the Tutorial

hOverview of the BO Framework, GPs,  advances in GPs 
and acquisition functions, and BoTorch demo 

hBayesian Optimization over Discrete/Hybrid Spaces

hMulti-fidelity Bayesian Optimization

hHigh-Dimensional BO and BoTorch Hands-on demo

hMulti-Objective BO and BoTorch Hands-on demo

hSummary and Outstanding Challenges in BO

30 mins Break
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Open Challenges in BO
hHigh-dimensional BO

5 Need more effective approaches for high-dimensional spaces

hBO over Combinatorial Structures
5How to combine domain knowledge, kernels, and (geometric) 

deep learning to build effective surrogate models?
5Effective methods to select large and diverse batches?

hBO over Hybrid Spaces
5Methods to sample functions from GP posterior?
5Effective latent space BO methods?
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Open Challenges in BO
hConstrained BO

5 Need more effecBve approaches for input spaces, where no. of 
invalid inputs >> no. of valid inputs

hBO over Nested Func0on Pipelines
5 RelaBvely less explored problem

hBO with Resource Constraints
5 Real-world experiments need resources and setup Bme
5 CriBcal for BO deployment in science and engineering labs

hDemocra0ze causal BO for diverse real-world applica0ons
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Acknowledgements: Collaborators

h Nano-porous materials

h Microbial fuel cells

h Catalysis

h Hardware design

h Electric transportation systems

h Agriculture
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Ques%ons ?


